

Angewandte International Edition www.angewandte.org

### **High-Pressure Chemistry**

How to cite: Angew. Chem. Int. Ed. 2025, e202422710 doi.org/10.1002/anie.202422710

## **Pressure-Driven Reactivity in Dense Methane-Nitrogen Mixtures**

Hannah A. Shuttleworth, Mikhail A. Kuzovnikov, Lewis J. Conway, Huixin Hu, Jinwei Yan, Samuel Gallego-Parra, Israel Osmond, Tomas Marqueño, Michael Hanfland, Dominique Laniel, Eugene Gregoryanz, Andreas Hermann,\* Miriam Peña-Alvarez,\* and Ross T. Howie\*

**Abstract:** Carbon, nitrogen, and hydrogen are among the most abundant elements in the solar system, and our understanding of their interactions is fundamental to prebiotic chemistry.  $CH_4$  and  $N_2$  are the simplest archetypical molecules formed by these elements and are both markedly stable under extremes of pressure. Through a series of diamond anvil cell experiments supported by density functional theory calculations, we observe diverse compound formation and reactivity in the  $CH_4$ - $N_2$  binary system at high pressure. Above 7 GPa two concentration-dependent molecular compounds emerge,  $(CH_4)_5N_2$  and  $(CH_4)_7(N_2)_8$ , held together by weak van der Waals interactions. Strikingly, further compression at room temperature irreversibly breaks the  $N_2$  triple bond, inducing the dissociation of  $CH_4$  above 140 GPa, with the near-quenched samples revealing distinct spectroscopic signatures of strong covalently bonded C-N-H networks. High temperatures vastly reduce the required pressure to promote the reactivity between  $CH_4$  and  $N_2$ , with  $NH_3$  forming together with longer-chain hydrocarbons at 14 GPa and 670 K, further decomposing into powdered diamond when temperatures exceed 1200 K. These results exemplify how pressure-driven chemistry can cause unexpected complexity in the most simple molecular precursors.

#### Introduction

Carbon, nitrogen, and hydrogen constitute some of the most prevalent elements in the solar system, and exploring their

[\*] H. A. Shuttleworth, M. A. Kuzovnikov, L. J. Conway, J. Yan,
I. Osmond, T. Marqueño, D. Laniel, E. Gregoryanz, A. Hermann,
M. Peña-Alvarez, R. T. Howie
Centre for Science at Extreme Conditions, University of Edinburgh,
Edinburgh, EH9 3FD, United Kingdom
E-mail: ross.howie@ed.ac.uk
Miriam.Pena.Alvarez@ed.ac.uk
a.hermann@ed.ac.uk
H. Hu, R. T. Howie
Center for High Pressure Science and Technology Advanced
Research, 1690 Cailun Road, Shanghai, 201203, China
L. I. Conway

Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom

S. Gallego-Parra, M. Hanfland

European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France

E. Gregoryanz

Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei, 230031, China

E. Gregoryanz

SHARPS (Shanghai Advanced Research in Physical Sciences), 68 Huatuo Road, Shanghai, 201203, China

© 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. chemical interactions is crucial to understanding the origin of life.<sup>[1]</sup> To explore the chemical interplay between these elements at planetary relevant conditions, the effect of pressure must be considered in addition to temperatureinduced chemistry. By altering molecular orbitals and interactions, high pressure serves as a clean chemical method for the synthesis of novel materials that would otherwise be unstable at ambient pressure.<sup>[2-12]</sup> A key example of this is how the stability and reactivity of molecular materials evolve upon compression. Due to the extremely strong N $\equiv$ N triple bond, molecular N<sub>2</sub> is one of the least reactive molecules under ambient conditions. However, high pressure has been shown to induce the formation of numerous non-molecular phases of nitrogen, requiring the breaking of the triple bond.<sup>[13-22]</sup> The potential chemistry of N<sub>2</sub> at high pressure is further enhanced with temperature, resulting in the synthesis of novel polynitrides, which are of key interest due to their potential as high energy density compounds.<sup>[4,10,23–28]</sup>

Like nitrogen, methane is another example of a simple molecular system that undergoes a series of physical and structural changes under pressure, with crucial implications in understanding physical processes within planetary interiors.<sup>[29–31]</sup> Both theoretical and experimental studies have demonstrated that the decomposition of methane into longer hydrocarbons and diamond is favored when compressed and heated.<sup>[29,32–38]</sup> Additionally, it is theorized that at room temperature and pressures approaching 300 GPa, methane will dissociate into diamond and H<sub>2</sub>, which is of great interest regarding the mantle region of planets such as Neptune and Uranus, where methane is abundant.<sup>[33,39–42]</sup>

Angew. Chem. Int. Ed. 2025, e202422710 (1 of 7)

There is observational evidence that reactions occur between CH<sub>4</sub> and N<sub>2</sub> in the atmosphere of the satellite Titan, whereby hydrocarbon-nitrile aerosol compounds, named "tholins", have formed from CH<sub>4</sub>-N<sub>2</sub> mixtures at low pressures and temperatures in the presence of solar ultraviolet radiation.<sup>[43-47]</sup> Recent theoretical works also predict that under dense planetary conditions, exotic organic chemistry occurs within the C-N-H system.<sup>[48,49]</sup> A variety of stable C-N-H compounds are predicted to emerge at pressures up to 50 GPa.<sup>[48]</sup> Most notably, two high energy density compounds were predicted: CN<sub>2</sub>H<sub>4</sub> and CH<sub>4</sub>N<sub>4</sub>, stable at 11 GPa and 41 GPa respectively, the latter of which is predicted to be stable to ambient conditions upon quenching. With a calculated energy release of 6.43 KJg<sup>-1</sup> upon decomposition back into molecular N2 and CH4, this is a promising high energy density compound.<sup>[48]</sup>

At ambient pressure, experiments have shown that  $CH_4$ and  $N_2$  can react, though require combinations of hightemperature, electric discharge, microwave radiation, and catalysts.<sup>[50-53]</sup> Most experimental approaches investigating the C–N–H system at high pressure have used complex precursors rather than the simplest archetypical molecules originating from the ternary system:  $CH_4$  and  $N_2$ .<sup>[54-57]</sup> There has been only one experimental study on  $CH_4$ - $N_2$  mixtures up to 16 GPa, presenting evidence of compound formation retaining  $N_2$  and  $CH_4$  molecular units; however, the structural characterization was unsuccessful.<sup>[58]</sup> Surprisingly, whether the combination of high pressure and temperature can facilitate a reaction between  $CH_4$  and  $N_2$  has yet to be explored experimentally.

In this work, we investigate pressure and temperatureinduced chemistry in the dense  $CH_4$ - $N_2$  system. We report the formation of two  $CH_4$ - $N_2$  van der Waals compounds above 7 GPa at room temperature from binary  $CH_4$ - $N_2$  fluid mixtures. Through a combination of X-ray diffraction and first principle calculations, these are identified as  $P4_2/mnm$ - $(CH_4)_7(N_2)_8$  and *Ibam*- $(CH_4)_5N_2$ . Remarkably, upon room temperature compression of either compound, we observe the irreversible pressure-induced dissociation and the reaction of  $N_2$  and  $CH_4$  molecules above 140 GPa. Decompression of the reaction products to near-ambient conditions reveals spectroscopic signatures of strong covalently bonded C–N–H networks. The application of high temperature can induce a reaction at substantially lower pressures, where we observe the formation of NH<sub>3</sub>, together with longer-chain hydrocarbons at 670 K (at 14 GPa), the latter of which decomposes into powdered diamond when temperatures exceed 1200 K at 25 GPa.

### **Results and Discussion**

# Synthesis, Characterization and Stability of $\mathsf{CH}_4\text{-}\mathsf{N}_2$ Molecular Compounds

Two representative  $CH_4$ - $N_2$  gas mixtures (50:50  $CH_4$ : $N_2$ and 67:33  $CH_4$ : $N_2$ ) were loaded into diamond anvil cells at 0.2 GPa (see Supporting Information for a complete description of the experimental procedure). Upon compression above 2 GPa, the fluid mixtures solidified into A- $CH_4$ +  $\delta$ - $N_2$ .<sup>[59-63]</sup> Compression of the 50:50 mixture above 7 GPa resulted in the formation of a new compound. Single crystal X-ray diffraction (SCXRD) data were obtained. These datasets were successfully refined to a crystal structure isomorphic to  $\sigma$ -CrFe (space group  $P4_2/mnm$ , Figure 1a), with lattice parameters a=11.904(3) Å and c=6.2072(13) Å,



**Figure 1.** (a) Structural models of the unit cell of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> (top) and a projection of the  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> structure along the *c*-axis (bottom). Different colors represent different molecular sites rather than different molecular types. The shape of the ellipsoids represents the preferred orientation of the molecules. (b) Slice of the (0kl) reciprocal space of an  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> single crystal at 7 GPa. The blue circles indicate visible reflections. The systematic absences are consistent with those of space group  $P4_2/mnm$ . (c) Reconstruction of the (hk2) reciprocal space slice built using single-crystal data collected on *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> single crystal at 13 GPa. The blue circles highlight visible reflections. The systematic absences are consistent with cell of *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> (top) and a projection of the *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> unit cell along the *c*-axis (bottom), nitrogen atoms are represented as blue spheres and CH<sub>4</sub> molecules are represented by brown spheres.

Angew. Chem. Int. Ed. 2025, e202422710 (2 of 7)

at 7 GPa (see Figure 1b and Supporting Table S1 for crystallographic data).<sup>[64]</sup> The unit cell of this compound is shown in Figure 1a. Due to strong molecular rotational disorder providing limited reflections at low *d*-spacings, along with a comparable scattering factor for  $N_2$  and CH<sub>4</sub>, we were unable to estimate site occupancies. We observed no further structural changes in our powder XRD measurements (Supporting Figure S1a) up to at least 47 GPa (Figure 2b).

Upon compression of the 67:33 CH<sub>4</sub>:N<sub>2</sub> mixture to 9 GPa, we observe the presence of another uncharacterized compound. SCXRD data obtained at 13 GPa were refined to an *Ibam* unit cell (Figure 1d) with lattice parameters a =11.854(12) Å, b=18.459(5) Å and c=5.6278(12) Å at 13 GPa (see Figure 1c and Supporting Table S2 for crystallographic data).<sup>[68]</sup> To the best of our knowledge, this is the first observation of this structural type. Out of the six distinct crystallographic positions, nitrogen could unambiguously be assigned to the 16k site (see Supporting Information for further details). With the five remaining sites assigned as CH<sub>4</sub> molecules, the experimental data suggests a (CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> composition. Extracted volumetric data from powder XRD measurements (Supporting Figure S1b) upon compression demonstrates that this compound is stable to at least 23 GPa (Figure 2b).

To ascertain the stability of the molecular compounds and estimate their compositions, we performed density functional theory (DFT) calculations (see Supporting Information for computational details). The resulting lowest formation enthalpies form part of Figure 2a, where they are shown relative to pure  $\varepsilon$ -N<sub>2</sub> and pure CH<sub>4</sub> (in the HP phase, *R*3-CH<sub>4</sub>).<sup>[66]</sup> The convex hull also includes additional data points based on the  $\delta$ -N<sub>2</sub> structure type, which was proposed in earlier work<sup>[58]</sup> to allow for some uptake of CH<sub>4</sub>. The only compositions that emerge as stable phases on the convex hull are  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> and *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub>, the latter agreeing with experimental results. The Supporting Information contains molecular dynamics (MD) simulation results (which confirm the compounds' kinetic stability and molecular rotational/librational character), composition-volume data, and results from alternative exchange-correlation functionals.

We have investigated both the  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> and Ibam-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> phases using Raman spectroscopy, which allows us to directly explore any changes in the inter/intramolecular environments. At 8.5 GPa, the Raman spectrum of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> exhibits the characteristic Raman modes of molecular CH<sub>4</sub> and N<sub>2</sub>: the C–H bending mode  $\nu_2$ at 1536 cm<sup>-1</sup>; C–H symmetric ( $\nu_1$ ) and antisymmetric ( $\nu_3$ ) modes at 2996 cm<sup>-1</sup> and 3115 cm<sup>-1</sup>, respectively; and the N<sub>2</sub> intramolecular vibrational modes,  $\nu_2$  at 2341 cm<sup>-1</sup> and  $\nu_1$  at 2346 cm<sup>-1</sup>. At lower pressures, the Raman spectra of Ibam-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> closely resembles that of P4<sub>2</sub>/mnm-(CH<sub>4</sub>)<sub>7</sub>- $(N_2)_8$ . Upon compression, it becomes evident that the Raman frequency of the N<sub>2</sub> vibrons and the CH<sub>4</sub> stretching modes of each compound have a different pressure dependency, indicative that the molecular environments differ. For example, at 28 GPa, the Raman frequency of the N<sub>2</sub>- $\nu_2$ vibron is 2372 cm<sup>-1</sup> for  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub>, and 2367 cm<sup>-1</sup> for *Ibam*-( $CH_4$ )<sub>5</sub>N<sub>2</sub>.

Additionally, both compounds exhibit a distinct deviation in the frequencies of the Raman active modes compared with the pure species (Figure 3a).<sup>[31,67]</sup> For example, in pure nitrogen, there is complex splitting of the N<sub>2</sub>- $\nu_2$  vibron at 24 GPa<sup>[67]</sup> (Supporting Figure S2), whilst P4<sub>2</sub>/mnm-(CH<sub>4</sub>)<sub>7</sub>-(N<sub>2</sub>)<sub>8</sub> and *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> show two distinct modes. Splitting of the CH<sub>4</sub>- $\nu_1$  into CH<sub>4</sub>- $\nu_1(1)$  and CH<sub>4</sub>- $\nu_1(2)$  is observed during compression of *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> beyond 67 GPa<sup>[31]</sup>



**Figure 2.** (a) Ground state relative enthalpies of  $CH_4$ - $N_2$  mixtures from DFT calculations at 15 GPa, based on the  $\sigma$ -CrFe, *Ibam*, and  $\delta$ - $N_2$  structure types (see text). The black line indicates the convex hull of stable phases. (b) Volume per molecule of the two van der Waals compounds as a function of pressure, obtained from powder XRD data. Symbols represent experimental data for  $P4_2/mnm$ -( $CH_4$ )<sub>7</sub>( $N_2$ )<sub>8</sub> (blue) and *Ibam*-( $CH_4$ )<sub>5</sub> $N_2$  (orange), with stars representing SCXRD data and the remaining symbols representing powder XRD data. The solid lines represent their best Birch-Murnaghan fit. The dashed line represents the equation of state of pure  $N_2$ <sup>(65)</sup> and the dotted line represents that of pure  $CH_4$ .

Angew. Chem. Int. Ed. 2025, e202422710 (3 of 7)



*Figure 3.* (a) Raman spectra upon compression of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub>, synthesized from a 50% N<sub>2</sub> mixture, from 8.5 to 163 GPa (blue), and the Raman spectrum of pure CH<sub>4</sub> at 163 GPa (lilac). The asterisk denotes a peak which is an artifact of the diamond anvils. (b) Raman shift of the N<sub>2</sub> vibrational modes and C–H stretching modes of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> (blue) and *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> (orange) as a function of pressure, synthesized from a 50% and 67% CH<sub>4</sub> gas mixture, respectively. Different symbols represent different experimental runs, and the empty symbols denote data collected upon decompression. Dotted lines represent the N<sub>2</sub> vibrational modes of pure CH<sub>4</sub>.<sup>[31]</sup> Inset: Profile of the N<sub>2</sub> vibrational modes of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> (blue) and *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> (orange) at 30 GPa.

(Figure 3b). The splitting is not resolvable in  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> due to the low intensity of the C–H stretching modes. Furthermore, inspection of the N<sub>2</sub> vibrational modes reveals that the relative intensity of the N<sub>2</sub>- $\nu_1$  and N<sub>2</sub>- $\nu_2$  modes also depends on the compound formed, as seen in Figure 3b. In both compounds, we also see an intense broad band at frequencies close to the Rayleigh line (Figure 3a). This could be attributed to rotational disordered molecules, which is in agreement with our X-ray diffraction measurements and MD simulations demonstrating freely rotating CH<sub>4</sub> units (Supporting Figure S6).

#### Pressure Induced Reactivity in the CH<sub>4</sub>-N<sub>2</sub> System

While CH<sub>4</sub> is stable to at least 200 GPa,<sup>[31,69]</sup> the triple bond of molecular N<sub>2</sub> undergoes progressive weakening to the extent that polymeric allotropes form above 110 GPa.<sup>[13-22]</sup> We investigated the reactivity of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> (Figure 3a) and *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> (Supporting Figure S3) phases using Raman spectroscopy. Compression of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> led to a turnover in the frequencies of the N<sub>2</sub> vibrons above 100 GPa and subsequent softening of the modes (Figure 3b). At 128 GPa, the higher frequency  $\nu_1$ vibron becomes unidentifiable, while the N<sub>2</sub>- $\nu_2$  mode is unresolvable above 163 GPa in  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> and 136 GPa in *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub>. Before disappearing, the frequency of the N<sub>2</sub> vibrational mode in  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> at 163 GPa is comparative to the frequency observed in pure N<sub>2</sub> at the onset of polymerization (120 GPa).<sup>[16,19]</sup> This is indicative of pressure-induced breaking of the N<sub>2</sub> triple bond to form polymeric nitrogen.<sup>[13,14,16,67,70-73]</sup> Concurrently, a new mode at around 1200 cm<sup>-1</sup> appears, corresponding to vibrational modes of single bonded C–N and C–C.<sup>[74-77]</sup> Additionally, the CH<sub>4</sub>- $\nu_2$  bending mode, along with the symmetric ( $\nu_1$ ) and anti-symmetric ( $\nu_3$ ) stretching modes, decreases in intensity and broadens (Figure 3a). A direct comparison to the Raman spectrum of CH<sub>4</sub>,<sup>[31]</sup> which we measured at 163 GPa to provide a reference (Figure 3a), indicates dissociation and formation of a reaction product. No detectable X-ray diffraction patterns were obtained at this pressure, likely due to weak scattering or sample amorphization, similar to  $\eta$ -nitrogen.<sup>[14]</sup>

Strikingly, decompression of the reaction products to 5(4) GPa, does not result in the transformation back into either molecular compound nor do the Raman signatures of molecular N<sub>2</sub> reappear (Figure 4a and Supporting Figure S3), unlike pure N<sub>2</sub> whereby the vibrons re-emerge at 40 GPa.<sup>[67]</sup> Similarly, the C–H stretching modes remain broad compared to either molecular compound at comparative pressures, while the band between 1100–1200 cm<sup>-1</sup> remains active but as a broad series of peaks, which we attribute to the formation of oligomers.<sup>[74]</sup> These Raman features are observed regardless of whether the reaction products of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> or *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> are decompressed.

By comparing the experimental data with the known Raman spectra of the simplest covalent C–H–N compounds, amines, we tentatively assign it to propylamine (CH<sub>3</sub> (CH<sub>2</sub>)<sub>2</sub>NH<sub>2</sub>). As such, we measured the Raman spectra of

Angew. Chem. Int. Ed. 2025, e202422710 (4 of 7)



*Figure 4.* (a) Raman spectrum of NH<sub>3</sub>, powdered diamond and hydrocarbons at 25 GPa, formed after laser heating  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> (red), the Raman spectrum after compression of a 50% CH<sub>4</sub> mixture to 163 GPa then decompression to 5 GPa (black), and the Raman spectrum of propylamine (CH<sub>3</sub>)<sub>2</sub>(NH)<sub>2</sub>) at 3 GPa (green). The diamond symbols represent the second-order diamond Raman mode. (b) Rietveld refinement of *fcc* NH<sub>3</sub>-III and powdered diamond quenched to ambient temperature, formed after laser heating  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> to above 1200 K at 40 GPa. The diffraction pattern of  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> before laser heating is also shown.

propylamine up to 3 GPa to provide a direct comparison (Figure 4). Here, we see reasonable agreement between the modes around 3100-3450 cm<sup>-1</sup>, attributed to N-H stretching, together with C-H stretching modes in the 2800-3000 cm<sup>-1</sup> region.<sup>[76]</sup> Deformation modes within the 1400- $1500 \text{ cm}^{-1}$  region and C-H bending in the  $1560-1580 \text{ cm}^{-1}$ region are in good agreement with those of our products.<sup>[76-78]</sup> We also see an overlap in the N–H stretching region, indicating the presence of additional molecular units. Unfortunately, attempts at structural characterization of the reaction products were unsuccessful, which we attribute to the small sample sizes combined with the weak X-ray scattering of the constituent elements, whilst full decompression led to the loss of the samples. In recent theoretical works exploring compound formation in the C-N-H system, a molecular compound composed of propylamine, NH<sub>3</sub>, and CH<sub>4</sub> units is predicted to be the most thermodynamically stable reaction product in CH<sub>4</sub>-N<sub>2</sub> mixtures below 10 GPa.<sup>[48]</sup> As such, we propose this molecular compound, CH<sub>3</sub>  $(CH_2)_2NH_2 + NH_3 + CH_4$ , as the most promising candidate for the compression product. Interestingly, amines, including propylamine, are believed to be a constituent of Titan's "tholins".[79,80]

Given that temperature is known to destabilize both  $CH_4$  and  $N_2$  at high pressure, we explored the high temperature stability of the molecular compounds in an attempt to synthesize covalently bonded C–N–H compounds at lower pressures.<sup>[48]</sup> Upon heating *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> phase to temperatures above 670 K at 14 GPa, we observe a reaction to form NH<sub>3</sub> as evidenced by our X-ray diffraction measurements (see Supporting Figure S4).<sup>[81]</sup> Laser heating either *P*4<sub>2</sub>/ *mnm*-(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> or *Ibam*-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> precursors at 40 GPa to temperatures in excess of 1200 K also led to a reaction, with the temperature quenched diffraction pattern showing the formation of NH<sub>3</sub>-III together with *fcc* diamond (*a*= 3.4778 Å) (Figure 4b and Supporting Figure S5). The presence of powdered diamond is a result of the decomposition of CH<sub>4</sub> into C, with H<sub>2</sub> reacting to form NH<sub>3</sub> and longer chain hydrocarbons when laser heated.<sup>[29,33,34]</sup> Raman spectroscopy experiments of the quenched sample support these observations, with the N<sub>2</sub> vibrons becoming unresolvable and the NH<sub>3</sub> stretching modes,  $v_1$ ,  $2v_4$  and  $v_3$ , appearing at  $3187 \text{ cm}^{-1}$ ,  $3318 \text{ cm}^{-1}$  and  $3395 \text{ cm}^{-1}$  at 25 GPa. The C–H stretching mode  $v_1$ , additional modes in the C–H bending region 1460–1800 cm<sup>-1</sup>, and a complex spectrum below  $1330 \text{ cm}^{-1}$  suggest the presence of a mixture of longer-chain light hydrocarbons.<sup>[36,82]</sup> Such mixtures have been previously established as oligomers, which are undetectable in X-ray diffraction experiments.<sup>[83]</sup>

Angewandte

Chemie

#### Conclusion

By compressing mixtures of the simple CH<sub>4</sub>-N<sub>2</sub> binary molecular system in a series of diamond anvil cell experiments, we report the formation of two molecular van der *Ibam*-( $CH_4$ )<sub>5</sub> $N_2$ Waals compounds, and  $P4_{2}/mnm$ - $(CH_4)_7(N_2)_8$ , above 7 GPa and 300 K. Remarkably, compression of either of these compounds results in the breaking of the N<sub>2</sub> triple bond and dissociation of CH<sub>4</sub>, with the reaction product exhibiting spectroscopic signatures of singly-bonded C-N-H compounds upon decompression to near-ambient pressure. We identify the previously predicted molecular compound  $CH_3(CH_2)_2NH_2 + NH_3 + CH_4$  as a potential reaction product. Upon heating either Ibam-(CH<sub>4</sub>)<sub>5</sub>N<sub>2</sub> or  $P4_2/mnm$ -(CH<sub>4</sub>)<sub>7</sub>(N<sub>2</sub>)<sub>8</sub> to temperatures of 670 K at 14 GPa, we observe decomposition into NH<sub>3</sub> and longer-chain light hydrocarbons. Above 1200 K at pressures exceeding 25 GPa, the hydrocarbons further decompose, producing powdered diamond. These combined results demonstrate the complexity of compound formation in the C-N-H ternary system under planetary-relevant conditions, even when starting from the simplest precursors. Such mixtures comprise the atmosphere of Saturn's moon Titan, and it will be of great interest to see if the reaction products we observe in experiments will be observed directly through the proposed Dragonfly mission exploring prebiotic chemistry on the satellite.

#### Acknowledgements

Dr. Ross T. Howie acknowledges that the project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant Agreement 948895 "MetElOne"). Dr. Miriam Peña-Alvarez and Dr. Dominique Laniel acknowledge the support of the UK Research and Innovation (UKRI) Future Leaders Fellowship (Mrc-Mr/ T043733/1 and MR/V025724/1, respectively). The authors thank Dr. Mengan Wang for assistance in data analysis, and Ms Zena Younes for useful discussions. We acknowledge the European Synchrotron Radiation Facility (ESRF) for the provision of synchrotron radiation facilities at beamline ID15B under proposal HC-5261. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA-III P02.2 and we would like to thank Dr. Konstantin Glazyrin for assistance. Beamtime was allocated for proposal I-20221366. Parts of the synchrotron radiation experiments were performed at BL10XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2023B1420). Part of the study was performed at I15, Diamond Light Source (Didcot, UK) under proposal CY30698-1. We are grateful for computational support from the UK national high-performance computing service, ARCHER2, for which access was obtained via the UKCP consortium and funded by EPSRC grant ref EP/X035891/1. For open access, the author has applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

### **Conflict of Interest**

The authors declare no conflicts of interest.

#### **Data Availability Statement**

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: high-pressure chemistry · raman spectroscopy · synchrotron x-ray diffraction · molecular systems · high-temperature chemistry

Angew. Chem. Int. Ed. 2025, e202422710 (6 of 7)

- [2] W. Vos, L. Finger, R. Hemley, J. Hu, H. Mao, J. Schouten, Nature 1992, 358, 46.
- [3] P. Loubeyre, M. Jean-Louis, R. LeToullec, L. Charon-Gérard, Phys. Rev. Lett. 1993, 70, 178.
- [4] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, R. Hemley, Nat. Mater. 2004, 3, 294.
- [5] M. Somayazulu, P. Dera, A. Goncharov, S. Gramsch, H.-P. Liermann, Z. Liu, R. Hemley, Nat. Chem. 2010, 2, 50.
- [6] D.K. Spaulding, G. Weck, P. Loubeyre, F. Datchi, P. Dumas, M. Hanfland, Nat. Commun. 2014, 5, 5739.
- [7] A. Dewaele, N. Worth, C. J. Pickard, R. J. Needs, S. Pascarelli, O. Mathon, M. Mezouar, T. Irifune, Nat. Chem. 2016, 8, 784.
- [8] R.T. Howie, R. Turnbull, J. Binns, M. Frost, P. Dalladay-Simpson, E. Gregoryanz, Sci. Rep. 2016, 6, 34896.
- [9] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas, F. Balakirev, D. Graf, V. Prakapenka, et al., Nature 2019, 569, 528.
- [10] Y. Wang, M. Bykov, I. Chepkasov, A. Samtsevich, E. Bykova, X. Zhang, S.-q. Jiang, E. Greenberg, S. Chariton, V.B. Prakapenka, et al., Nat. Chem. 2022, 14, 794.
- [11] U. Ranieri, L. J. Conway, M.-E. Donnelly, H. Hu, M. Wang, P. Dalladay-Simpson, M. Peña-Alvarez, E. Gregoryanz, A. Hermann, R. T. Howie, Phys. Rev. Lett. 2022, 128, 215702.
- [12] J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, A. Nelson, Science 2006, 311, 1275.
- [13] A.F. Goncharov, E. Gregoryanz, H.-k. Mao, Z. Liu, R.J. Hemley, Phys. Rev. Lett. 2000, 85, 1262.
- [14] E. Gregoryanz, A. F. Goncharov, R. J. Hemley, H.-k. Mao, Phys. Rev. B 2001, 64, 052103.
- [15] E. Gregoryanz, A. F. Goncharov, R. J. Hemley, H.-k. Mao, M. Somayazulu, G. Shen, Phys. Rev. B 2002, 66, 224108.
- [16] M. Eremets, A. Gavriliuk, I. Troyan, D. Dzivenko, R. Boehler, Nat. Mater. 2004, 3, 558.
- [17] E. Gregoryanz, A. F. Goncharov, C. Sanloup, M. Somayazulu, H.-k. Mao, R. J. Hemley, J. Chem. Phys. 2007, 126, 184505.
- C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, [18] Y. Meng, J. S. Smith, V. B. Prakapenka, et al., Sci. Adv. 2020, 6. eaba9206.
- [19] D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, N. Dubrovinskaia, Phys. Rev. Lett. 2020, 124, 216001.
- [20] D. Laniel, G. Geneste, G. Weck, M. Mezouar, P. Loubeyre, Phys. Rev. Lett. 2019, 122, 066001.
- [21] L. Lei, Q.-Q. Tang, F. Zhang, S. Liu, B.-B. Wu, C.-Y. Zhou, Chin. Phys. Lett. 2020, 37, 068101.
- [22] A.F. Goncharov, I.G. Batyrev, E. Bykova, L. Brüning, H. Chen, M. F. Mahmood, A. Steele, N. Giordano, T. Fedotenko, M. Bykov, Phys. Rev. B 2024, 109, 064109.
- [23] D. Laniel, B. Winkler, E. Koemets, T. Fedotenko, M. Bykov, E. Bykova, L. Dubrovinsky, N. Dubrovinskaia, Nat. Commun. 2019, 10, 4515.
- [24] M. Bykov, E. Bykova, G. Aprilis, K. Glazyrin, E. Koemets, I. Chuvashova, I. Kupenko, C. McCammon, M. Mezouar, V. Prakapenka, et al., Nat. Commun. 2018, 9, 2756.
- [25] D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, P. Loubeyre, J. Phys. Chem. Lett. 2018, 9, 1600.
- [26] B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, I. I. Oleynik, Chem. Mater. 2017, 29, 735.
- [27] D. Laniel, G. Weck, P. Loubeyre, Inorg. Chem. 2018, 57, 10685.
- [28] A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.-k. Mao, Phys. Rev. Lett. 2006, 96, 155501.
- [29] L. J. Conway, A. Hermann, Geosciences 2019, 9, 227.
- [30] H. Maynard-Casely, C. Bull, M. Guthrie, I. Loa, M. McMahon, E. Gregoryanz, R. Nelmes, J. Loveday, J. Chem. Phys. 2010, 133.064504.



<sup>[1]</sup> J. Oró, S. Kamat, Nature 1961, 190, 442.

5213773, 0 Downloaded from https://oninelibrary.wiley.com/doi/10.1002/anie.202422710 by University OF Ednburgh, Wiley Online Library on [01/05/2025]. See the Terms and Conditions (https://oninelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

- [31] J. Proctor, H. Maynard-Casely, M. Hakeem, D. Cantiah, J. Raman Spectrosc. 2017, 48, 1777.
- [32] M. Frost, R. S. McWilliams, E. Bykova, M. Bykov, R. J. Husband, L. M. Andriambariarijaona, S. Khandarkhaeva, B. Massani, K. Appel, C. Baehtz, et al., *Nature Astronomy* 2024, 8, 174–181.
- [33] L. R. Benedetti, J. H. Nguyen, W. A. Caldwell, H. Liu, M. Kruger, R. Jeanloz, *Science* 1999, 286, 100.
- [34] H. Hirai, K. Konagai, T. Kawamura, Y. Yamamoto, T. Yagi, *Phys. Earth Planet. Inter.* 2009, 174, 242.
- [35] B. Cheng, S. Hamel, M. Bethkenhagen, Nat. Commun. 2023, 14, 1104.
- [36] A. Kolesnikov, V. G. Kutcherov, A. F. Goncharov, *Nat. Geosci.* 2009, 2, 566.
- [37] L. Spanu, D. Donadio, D. Hohl, E. Schwegler, G. Galli, Proc. Natl. Acad. Sci. USA 2011, 108, 6843.
- [38] A. S. Naumova, S. V. Lepeshkin, A. R. Oganov, J. Phys. Chem. C 2019, 123, 20497.
- [39] M. Ross, Nature 1981, 292, 435.
- [40] M. A. Neumann, W. Press, C. Nöldeke, B. Asmussen, M. Prager, R. M. Ibberson, J. Chem. Phys. 2003, 119, 1586.
- [41] G. Gao, A. R. Oganov, Y. Ma, H. Wang, P. Li, Y. Li, T. Iitaka, G. Zou, J. Chem. Phys. 2010, 133, 144508.
- [42] D. Kraus, J. Vorberger, A. Pak, N. Hartley, L. Fletcher, S. Frydrych, E. Galtier, E. Gamboa, D. O. Gericke, S. Glenzer, et al., *Nature Astronomy* **2017**, *1*, 606.
- [43] J. H. Waite, D. T. Young, T. E. Cravens, A. J. Coates, F. J. Crary, B. Magee, J. Westlake, *Science* 2007, *316*, 870.
- [44] C. Sagan, B. Khare, Nature 1979, 277, 102.
- [45] J. H. Waite Jr, H. Niemann, R. V. Yelle, W. T. Kasprzak, T. E. Cravens, J. G. Luhmann, R. L. McNutt, W.-H. Ip, D. Gell, V. De La Haye, et al., *Science* 2005, *308*, 982.
- [46] C. McKay, A. Coustenis, R. Samuelson, M. Lemmon, R. Lorenz, M. Cabane, P. Rannou, P. Drossart, *Planet. Space Sci.* 2001, 49, 79.
- [47] A. Coustenis, R. K. Achterberg, B. J. Conrath, D. E. Jennings, A. Marten, D. Gautier, C. A. Nixon, F. M. Flasar, N. A. Teanby, B. Bézard, et al., *Icarus* 2007, 189, 35.
- [48] F. Peng, Y. Ma, A. Hermann, M. Miao, Phys. Rev. Mater. 2020, 4, 103610.
- [49] A. S. Naumova, S. V. Lepeshkin, P. V. Bushlanov, A. R. Oganov, J. Phys. Chem. A 2021, 125, 3936.
- [50] N. Ning, C. Qian, S. Zhou, Catalysis Science, Technology 2025, 15, 249.
- [51] X. Bai, S. Tiwari, B. Robinson, C. Killmer, L. Li, J. Hu, *Catalysis Science, Technology* 2018, 8, 6302.
- [52] P. Gartaganis, C. Winkler, Can. J. Chem. 1956, 34, 1457.
- [53] H. Blades, C. Winkler, Can. J. Chem. 1951, 29, 1010.
- [54] T. J. Koller, S. Jin, V. Krol, S. J. Ambach, U. Ranieri, S. Khandarkhaeva, J. Spender, S. McWilliams, F. Trybel, N. Giordano, et al., *Angew. Chem. Int. Ed.* 2024, 63, e202318214.
- [55] E. Horvath-Bordon, R. Riedel, P. McMillan, P. Kroll, G. Miehe, P. van Aken, A. Zerr, P. Hoppe, O. Shebanova, I. McLaren, et al., *Angew. Chem. Int. Ed.* 2007, 46, 1476.
- [56] A. Salamat, K. Woodhead, P. F. McMillan, R. Q. Cabrera, A. Rahman, D. Adriaens, F. Corà, J.-P. Perrillat, *Phys. Rev. B* 2009, 80, 104106.
- [57] M. Sougawa, T. Sumiya, K. Takarabe, Y. Mori, T. Okada, H. Gotou, T. Yagi, D. Yamazaki, N. Tomioka, T. Katsura, et al., *Jpn. J. Appl. Phys.* **2011**, *50*, 095503.
- [58] C. Aldous, Novel van der Waals Compounds in the Nitrogen-Methane Binary System at Room Temperature and High Pressure, Ph.D. thesis 2010.

- [59] I. Nakahata, N. Matsui, Y. Akahama, H. Kawamura, *Chem. Phys. Lett.* **1999**, *302*, 359.
- [60] R. Bini, G. Pratesi, Phys. Rev. B 1997, 55, 14800.
- [61] R. Bini, L. Ulivi, H. J. Jodl, P. R. Salvi, J. Chem. Phys. 1995, 103, 1353.
- [62] M. Hanfland, M. Lorenzen, C. Wassilew-Reul, F. Zontone, *Rev. High Pressure Sci. Techn.* 1998, 7, 787.
- [63] M. Frost, R. T. Howie, P. Dalladay-Simpson, A. F. Goncharov, E. Gregoryanz, *Physical Review B* 2016, 93, 024113.
- [64] Deposition number 2401472 contains the supplementary crystallographic data for this structure. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and FachinformationszentrumKarlsruhe Access Structures service.
- [65] H. Olijnyk, J. Chem. Phys. 1990, 93, 8968.
- [66] M. Bykov, E. Bykova, C. J. Pickard, M. Martinez-Canales, K. Glazyrin, J. S. Smith, A. F. Goncharov, *Phys. Rev. B* 2021, 104, 184105.
- [67] M. I. Eremets, R. J. Hemley, H.-K. Mao, E. Gregoryanz, *Nature* 2001, 411, 170.
- [68] Deposition number 2417277 contains the supplementary crystallographic data for this structure. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and FachinformationszentrumKarlsruhe Access Structures service.
- [69] L. Sun, W. Yi, L. Wang, J. Shu, S. Sinogeikin, Y. Meng, G. Shen, L. Bai, Y. Li, J. Liu, et al., *Chem. Phys. Lett.* **2009**, 473, 72.
- [70] P.M. Bell, H.K. Mao, R.J. Hemley, *Physica B+C* 1986, 139, 16.
- [71] D. Tomasino, M. Kim, J. Smith, C.-S. Yoo, Phys. Rev. Lett. 2014, 113, 205502.
- [72] F. Zahariev, S. V. Dudiy, J. Hooper, F. Zhang, T. K. Woo, *Phys. Rev. Lett.* **2006**, *97*, 155503.
- [73] M. Kirsz, C.G. Pruteanu, P.I.C. Cooke, G.J. Ackland, Understanding solid nitrogen through machine learning simulation 2024.
- [74] S. S. Lobanov, P.-N. Chen, X.-J. Chen, C.-S. Zha, K. D. Litasov, H.-K. Mao, A. F. Goncharov, *Nat. Commun.* 2013, 4, 2446.
- [75] E. Stavrou, S. Lobanov, H. Dong, A. R. Oganov, V. B. Prakapenka, Z. Konôpková, A. F. Goncharov, *Chem. Mater.* 2016, 28, 6925.
- [76] A. A. da Costa, C. Geraldes, J. Teixeira-Dias, J. Raman Spectrosc. 1982, 13, 56.
- [77] J. Durig, S. Bush, F. Baglin, J. Chem. Phys. 1968, 49, 2106.
- [78] E. Sato, H. Martinho, *Biomed. Optics Express* 2018, 9, 1728.
  [79] M. Cable, S. Hörst, C. He, A. Stockton, M. Mora, M. Tolbert,
- [79] M. Cable, S. Holst, C. He, A. Stockton, M. Mola, M. Holbert, M. Smith, P. Willis, *Earth Planet. Sci. Lett.* 2014, 403, 99.
- [80] F. Raulin, C. Brassé, O. Poch, P. Coll, Chem. Soc. Rev. 2012, 41, 5380.
- [81] F. Datchi, S. Ninet, M. Gauthier, A.M. Saitta, B. Canny, F. Decremps, *Phys. Rev. B* 2006, *73*, 174111.
- [82] A. Serovaiskii, V. Kutcherov, Sci. Rep. 2020, 10, 4559.
- [83] M. Wang, M. Pena-Alvarez, R. Howie, E. Gregoryanz, Revisiting the Phase Diagram of Methane 2024, submitted.

Manuscript received: November 21, 2024

Accepted manuscript online: February 19, 2025 Version of record online: **D**.

Angew. Chem. Int. Ed. 2025, e202422710 (7 of 7)



# **Research Article**

High-Pressure Chemistry

H. A. Shuttleworth, M. A. Kuzovnikov,
L. J. Conway, H. Hu, J. Yan, S. Gallego-Parra, I. Osmond, T. Marqueño,
M. Hanfland, D. Laniel, E. Gregoryanz,
A. Hermann,\* M. Peña-Alvarez,\*
R. T. Howie\* \_\_\_\_\_\_\_\_\_ e202422710

Pressure-Driven Reactivity in Dense Methane-Nitrogen Mixtures



 $CH_4$  and  $N_2$  are abundant molecules in our solar system and are the primary constituents of Titan's atmosphere. Under extreme pressures and temperatures within a diamond anvil cell,  $CH_4$ and  $N_2$  are demonstrated to react to form a range of compounds, dependent on the conditions and initial concentrations. This provides valuable insight into the complexity of the C–N–H ternary system under planetary conditions.