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Hydrofullerenes have been predicted theoretically
[1] and synthesized using various methods [2, 3]. The
stable hydrofullerene C

 

60

 

H

 

36

 

 has been studied exten-
sively to identify its molecular structure and properties
[4, 5]. It was found that the C

 

60

 

H

 

36

 

 molecule has a great
number of isomers and that the most stable of them
have 

 

T

 

h

 

, 

 

D

 

3

 

d

 

, 

 

S

 

6

 

, and 

 

T

 

 symmetry. The presence of var-
ious isomers in C

 

60

 

H

 

36

 

 samples depends mostly on the
preparation method [4, 6, 7]. The condensed phase of
C

 

60

 

H

 

36

 

 has a body-centered cubic (bcc) structure [lat-
tice constant 11.78(5) Å] which is expected to trans-
form into a body-centered tetragonal (bct) structure at
low temperatures [5]. In the present paper, we report
data on the pressure behavior of Raman and photolumi-
nescence spectra of C

 

60

 

H

 

36

 

 prepared by high-pressure
hydrogenation. Our goal was to study the effect of high
pressure on the energy spectrum, phase transitions, and
stability of the C

 

60

 

H

 

36

 

 molecule.

1. EXPERIMENTAL

For the preparation of hydrofullerene, pellets of C

 

60

 

(99.99% purity) were placed into a copper capsule,
covered with a disc of 0.01-mm thick Pd foil, and then
annealed in vacuum at 620 K. The remaining space was
filled with AlH

 

3

 

, and the capsule was tightly plugged
with a copper lid using gallium as a soldering agent.
Since Cu and Ga are highly impermeable to hydrogen,
the encapsulation described prevents hydrogen losses
effectively during treatment. The assembled capsule
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was pressurized to 3 GPa in a toroid-shaped cell and
maintained at 700 K for a time of up to 48 h. Above
400 K, AlH

 

3

 

 decomposes and the evolved hydrogen
reacts with C

 

60

 

. The mass-spectroscopy data show that
at least 95% of the final material is related to C

 

60

 

H

 

36

 

,
while the x-ray study shows that the material has a bcc
structure with a lattice parameter of 11.83 Å. For opti-
cal study at high pressure, colorless transparent speci-
mens of C

 

60

 

H

 

36

 

 were placed into a diamond anvil cell.
Photoluminescence and Raman spectra were recorded
using a single (JOBIN YVON THR-1000) and a triple
(DILOR XY-500) monochromator, both equipped with
a CCD liquid-nitrogen cooled detector system. The
676.4 and 457.9 nm lines of Kr

 

+

 

 and Ar

 

+

 

 laser radiation,
respectively, were used for excitation of the Raman and
luminescence spectra. The laser power was varied from
2 to 10 mW when measured directly in front of the cell.
A 4 : 1 methanol-ethanol mixture was used as the pres-
sure-transmitting medium, and the ruby fluorescence
technique was used for pressure calibration.

2. RESULTS AND DISCUSSION

The Raman spectrum of C

 

60

 

H

 

36

 

 under normal condi-
tions is shown in Fig. 1. The spectrum is considerably
richer than that of the pristine C

 

60

 

 and contains very
sharp and intense peaks in the low-frequency region,
while in the high-frequency region, its features are
rather broad and faint. This rich spectrum is related to
the hydrogenation of the C

 

60

 

 molecule, which results in
the lowering of the molecular symmetry and the forma-
tion of new C–H bonds. In addition to the C–H stretch-
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Abstract

 

—The effect of hydrostatic pressure on the photoluminescence and Raman spectra of hydrofullerene
C

 

60

 

H

 

36

 

 was investigated for pressures up to 12 GPa at room temperature. The samples were synthesized by
means of high-pressure hydrogenation. The pressure coefficients of the phonon modes were found to be positive
and demonstrate singularities at ~0.7 and ~6 GPa. The pressure shift of the luminescence spectrum is unusually
small and increases slightly at 

 

P

 

 

 

≥

 

 6 GPa. All observed features are reversible with pressure, and C

 

60

 

H

 

36

 

 is stable
in the pressure region investigated. 

 

© 2002 MAIK “Nauka/Interperiodica”.

 

PROCEEDINGS OF THE V INTERNATIONAL WORKSHOP 
“FULLERENES AND ATOMIC CLUSTERS”

 

(St. Petersburg, Russia, July 2–6, 2001)



 

PHYSICS OF THE SOLID STATE

 

      

 

Vol. 44

 

      

 

No. 3

 

      

 

2002

 

PHASE TRANSITIONS IN HYDROFULLERENE C

 

60

 

H

 

36

 

 543

 

2825
0

Pressure, GPa

0
Raman shift, cm

 

—1

 

500 1000 1500 2000 2500 3000

2 4 6 8 10 12

2850

2875

2900

2925

2950

2975

R
am

an
 s

hi
ft

, c
m

 

—
1

 

In
te

ns
ity

, a
rb

. u
ni

ts

 

Fig. 1.

 

 Raman spectra of C

 

60

 

H

 

36

 

 recorded under normal conditions. Insert: the pressure behavior of the C–H stretching modes. The
shaded areas near 0.7 and 6 GPa indicate possible phase transitions. Open and shaded symbols are related to an increase and
decrease in pressure, respectively.

 

ing modes near ~2800 cm

 

–1

 

, new modes related to C–H
bending vibrations appear in the region 1150–1350 cm

 

–1

 

[7]. The expected number of Raman active modes of
the C

 

60

 

H

 

36

 

 molecule depends on the symmetry and is
equal to 118, 60, 73, and 95 for the 

 

T

 

, 

 

T

 

h

 

, 

 

D

 

3

 

d

 

, and 

 

S

 

6

 

isomers, respectively. The number of recorded peaks in
the Raman spectrum of C

 

60

 

H

 

36

 

 is at least 126, which
means that the samples under investigation are a mix-
ture of at least two basic isomers. A detailed study of
the recorded Raman frequencies and a comparison with
molecular dynamics calculations [4] indicate that the
samples contain all five stable isomers, the most abun-
dant among them being those with 

 

D

 

3

 

d

 

 and 

 

S

 

6

 

 symmetry
[7]. The application of pressure strongly affects the
Raman spectrum, resulting in a positive shift of the
Raman peaks and a relative increase in their widths.
The pressure dependence of almost all Raman modes
shows two features (changes in the slope) near 0.7 and
6 GPa. However, the situation is essentially different for
the C–H stretching vibration modes, whose behavior is
shown in the inset to Fig. 1. These modes exhibit a pos-
itive shift up to ~6 GPa that changes into a negative one
at higher pressures. The softening of the C–H stretching
modes at high pressures may be associated with hydro-
gen bonding interaction between the hydrogen and car-

bon atoms of the adjacent molecules, resulting in a
pressure-induced enlargement of the C–H bond length
[8].

The photoluminescence spectrum of C

 

60

 

H

 

36

 

 under
normal conditions is depicted in Fig. 2. The intensity of
the luminescence and the threshold for the onset of the
spectrum are higher than those for the pristine C

 

60

 

 [9].
The pressure behavior of the luminescence spectrum of
C

 

60

 

H

 

36

 

 is shown in the inset to Fig. 2. The pressure
coefficients for the main luminescence peaks, A and B,
are negative and close to zero at pressures up to
~6.5 GPa; at higher pressures, they increase in absolute
value to –7.5 and –9 meV/GPa, respectively. The pres-
sure behavior of C

 

60

 

H

 

36

 

 is not typical of molecular crys-
tals, whose electronic states usually exhibit a large neg-
ative pressure shift which rapidly decreases with pres-
sure [10]. It is also known that the pressure-induced
shift of electronic states in molecular crystals may be
positive for molecules that have no center of symmetry
[11]. Taking into account that our samples contain the
(noncentrosymmetric) 

 

T

 

 isomer in abundance, the pres-
sure behavior up to 6.5 GPa may be associated with
mutual compensation of the opposite shifts of the lumi-
nescence spectra, originating from the electronic states
of various isomers. At higher pressures, however, lumi-
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nescence from other isomers (which have a center of
symmetry) dominates; their electronic states are down-
shifted in energy, and, therefore, we have an overall
negative pressure shift.
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Fig. 2.

 

 Photoluminescence spectrum of C

 

60

 

H

 

36

 

 recorded under normal conditions. Insert: the pressure dependence of the positions
of the main luminescence peaks.


