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Abstract
A model of self-diffusion in confined water is proposed. It is based on the idea that confined water forms structures similar to
hexagonal ice and its transport characteristics can be described in the framework of a quasiparticle approach. It is assumed that the
quasiparticles responsible for self-diffusion are D- and L-bond defects, which in the case of confined water are interstitial H2O
molecules and vacancies in an ice-like lattice. The process of D-defect migration is described as the diffusion of an ideal gas
through a porous medium. The analytical expression for the self-diffusion coefficient of confined water depending on the water
content quantitatively well describes the experimental data for Nafion-type of proton-exchange membranes.
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Introduction

The physical properties of pure bulk water are widely studied
experimentally and presented with references on a well-
known website [1]. The physical properties of confined water,
i.e., the water constrained on a nanometer scale at least in one
direction, are much less understood. However, the available
experimental data clearly indicate that many physical proper-
ties of confinedwater are radically different from those of bulk
water. These are the possibility of significant supercooling of
confined water to its glass transition temperature [2, 3], anom-
alous diffusion [4–8], pronounced quantum effects [8–11],
and some others. Recently, it has been found that the static
dielectric permittivity of confined water with a characteristic
size of ~ 1–2 nm is only ε ≈ 2 while ε ≈ 80 for bulk water [12].
At that the dielectric permittivity ε rises with the size of con-
fined water and reaches typical values for bulk water for a
sample thickness of around 100 nm, which is apparently a
scale for anomalous behavior [12].

Computer simulations and experimental studies show that
the structure of confined water is more ordered compared to
bulk water and consists of distorted hexagonal rings (hexamers)
[13–16], i.e., it is similar to the structure of ordinary hexagonal
ice (Fig. 1a). This allows using the Jaccard theory initially de-
veloped to describing ice transport characteristics [17, 18] and
recently transformed into the liquid state of confined water [19,
20]. According to the Jaccard theory, the transport processes in
the hexagonal-like molecular structure of a condensed H2O
state are due to the formation and migration of two types of
defects: ionic defects (H3O

+, OH–) and bond defects (L-, D-).
Both types of defects determine the proton conductivity, and
the partial conductivity of ionic defects in hexagonal ice is
significantly lower than that of bond defects. This results in
the decisive contribution of ionic defects to static dc conductiv-
ity and that of bond defects to high-frequency conductivity
[17–21]. However, at high pressures of around 20–30 GPa,
for static proton conductivity in ice, bond defects become deci-
sive [22]. In this paper, we proposed the model of self-diffusion
in confined water based on the connection of the bond defects
with vacancies and interstitials and applied the model to poly-
mer proton-exchange membranes.

Model statements

As it was shown in [23–26] the self-diffusion of H2O
molecules in ice-like structure is determined by the
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migration of L- and D-defects, which can be associated
with the vacancy and interstitial defects. The formation of
L- and D-defects is qualitatively shown in Fig. 1b, and
their migration processes are illustrated in Fig. 2 a, b.

The bounded energy of an interstitial D-defect is
around 0.2 eV whereas for vacancy (L-defect), this energy
is approximately two times higher (~ 0.38 eV) [23]. These
energies can be associated with the migration energy of
the mentioned defects, and they are close to the activation
energies of water self-diffusion coefficient (Dself) at high
and low temperatures, respectively, measured by NMR-
spectroscopy in various materials with confined water
[24, 27–33]. For example, for proton-exchange mem-
branes, there is a kink (crossover) in ln(Dself) vs. 1/T
dependencies at Tc of ~ 240–260 K with an activation
energy of ~ 0.18–0.24 eV above and of ~0.33–0.42 eV
below the crossover point Tc [24, 27, 28]. The similar
Dself(T) dependencies are observed for confined water in
zeolites [29], gels [29], carbon nanotubes [30], porous
silicon [31], sulfonated polynaphthoyleneimides [32], and
a metal-organic nanotubes [33], and generalized Dself(T)
behavior is schematically presented in Fig. 3.

Thus, the temperature dependencies of self-diffusion
coefficients for confined water demonstrate general
character independently of the chemical composition of

the surrounding matrix and the fragmentation degree of
the hydrogen-bond network which is governed by water
content. So, it can be proposed that at high tempera-
tures, the self-diffusion is mainly determined by the mi-
gration of interstitial D-defects, while with a decrease
below the crossover point, L-type vacancies start to play
a predominant role (Fig. 3).

Now we summarize the main statements for our model:

(1) The self-diffusion of H2O molecules and proton
conductivity in materials with confined water can
be described using the Jaccard model that is based
on the violations of ice rules [17, 18] and the for-
mation of ionic defects (H3O

+ and OH–) and bond
defects (L- and D-). These defects are considered
as quasiparticles responsible for transport character-
istics in confined water.

(2) L- and D-bond defects (or orientation defects) are re-
sponsible for the self-diffusion of water molecules.
These defects are a kind of quasiparticles that can be
considered as an ideal gas by analogy with quasiparticles
(electrons and holes) in semiconductors.

(3) We suppose that D-defect migration on the cages (Fig.
2a) is similar to the diffusion of an ideal gas through
porous media.

Fig. 1 a, b Schematic
representation of the hexamers of
the confined water cluster (a) and
the formation of L- and D-bond
defects in the cluster (b)

Fig. 2 a, b Illustrations of D- (a)
and L- (b) bond defect migrations
in the approximation of “the fro-
zen surrounding molecule states”
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Model application to proton-exchange
membranes

It has been shown experimentally and theoretically [34–36]
that the diffusion of a gas through a porous medium can be
described as:

D ¼ F exp −G=V f
� � ð1Þ

where F and G are the parameters depending on the size and
shape of a diffusing molecule, and Vf is the free volume for a
polymer–gas system. In the frame of our model, the free vol-
ume Vf corresponds to the pore volume of all hexamers, i.e., it
is proportional to the mass or the total number of water mol-
ecules NH2O of confined water and thus:

D ¼ D0mexp −m0=mð Þ ¼ D0N exp −N0=NH2Oð Þ ð2Þ
where m and NH2O are the mass and the number of molecules
of confined water in some matrix, and D0m, m0, D0N, N0 are
the fitting parameters. In particular, polymer proton-exchange
membranes where the mass or amount of adsorbed water mol-
ecules is determined as the number of H2O molecules per
SO3H group (λ = NH2O/NSO3H) the expression for the self-
diffusion coefficientDself vs. water content λ can be presented
as:

Dself λð Þ ¼ D Tð Þ exp –λ0=λð Þ ð3Þ

where λ0 is the fitting parameter, the physical meaning of
which will be discussed below, and D(T) is the diffusion co-
efficient of water in a givenmaterial at a fixed temperature and
excess water, i.e., when λ >> λ0.

It should be noted that application of free volume
conception for diffusion description in Nafion was pre-
viously proposed in [37–40]. However, the free volume
parameter was interpreted in these articles as a free

volume fraction of polymer in the water-swollen mate-
rial which has completely another physical meaning in
comparison to our approach.

The applicability of our model is tested on the experimental
data on water self-diffusion in Nafion 117 at temperatures of
303 K and 321 K [41] which were fitted with Eq. (3) (Fig. 4).
As can be seen, the dependencies of ln(Dself) vs. 1/λ for both
temperatures are linear in accordance with Eq. (3). The values
of the parameter λ0 are the same for both temperatures (λ0 ≈
12). This value correlates with the number of H2O molecules
for their typical space location ~ 3–4 nm [28, 42, 43] in
Nafion. Accepting for water molecule diameter of 0.28 nm
[44], the number of molecules packed in this location length
is around 11–14.

At the same time, it is obvious that the percolation paths for
the diffusion of water molecules in the central part of the
channel surely appear. Therefore, the parameter λ0 can be
considered as the boundary value of percolation along the
hydrogen-bond network for a given geometry of the transport
channel.

The parameter D(T) in Eq. (3) corresponds to the value of
the self-diffusion coefficient of water in Nafion 117 at a fixed
temperature and λ >> λ0, i.e., this is a limiting value of self-
diffusion coefficient for completely filled channels for given
polymeric matrix. The process of H2O self-diffusion in Nafion
is isotropic and three-dimensional [28]. However, the mole-
cule moves in the polymeric matrix along entangled tortuous
trajectories that reduce the value of self-diffusion coefficient
by the tortuosity factor β in comparison with self-diffusion
coefficient of bulk water and thus:

D Tð Þ ¼ DH2O Tð Þ
β

ð4Þ

where DH2O(T) is the self-diffusion coefficient of bulk water
at the fixed temperature T, and β is the tortuosity factor.

Fig. 3 Typical temperature dependence of self-diffusion coefficient Dself

in confined water

Fig. 4 Fit of experimental data [41] using Eq. (3). The fitting parameters
are presented close to the corresponding line
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The coefficient β for Nafion 117 was determined experi-
mentally as β ≈ 2 at high water content λ > 6 [45], which is
close to the excess water condition. The values of water self-
diffusion coefficients obtained by fitting the experimental data
Dself (λ) using Eq. (3) and taking into account the tortuosity
factor with Eq. (4) are equal to DH2O(T) = 2.5 × 10−5 cm2/s at
T = 303 K (30 °C) and DH2O(T) = 4.28 × 10−5 cm2/s at T =
321 K (48 °C), while the experimental data of DH2O(T) for
bulk water are 2.4 × 10−5 cm2/s at T = 303 K (30 °C) and 3.7 ×
10−5 cm2/s at T = 321 K (48 °C) [46]. It can be seen that there
is a good correspondence between these values, i.e., expres-
sion (3) describes correctly the self-diffusion coefficient vs.
water content.

Conclusion

A model of possible self-diffusion micromechanism in mate-
rials with confined water is proposed. It is based on the idea
that confined water forms structures similar to hexagonal ice
and its transport characteristics can be described in the frame-
work of a quasiparticle approach. The analytical expression
for the self-diffusion coefficient of confined water depending
on the water content is found and it describes quantitatively
well the experimental data for Nafion-type of proton-
exchange membranes. The physical meaning of the model
parameters is discussed. The parameters can be considered
as guidance for the experiment interpretations.

It should be noted that Eq. (3) seems to be possessed uni-
versality to various matrixes containing confined water and
can be also applied to the analysis of dc conductivity as a
function of water content. However, it is a separate study
beyond the scope of the short communication.
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