Черноголовка, 2020

И.И. Горбачёв, В.В. Попов

Прогнозирование характеристик структуры и фазового состава сталей с карбонитридным упрочнением при горячей деформации

Институт физики металлов имени М. Н. Михеева

Уральского отделения Российской академии наук

На что направлена модель

Компоненты модели

Эволюция ансамбля карбонитридных частиц

Модель

Изменение плотности дислокаций р Изменение среднего размера зерна аустенита *D*

Компоненты модели

Эволюция ансамбля карбонитридных частиц

Модель

Изменение плотности дислокаций р Изменение среднего размера зерна аустенита D

Исходные данные:

- Состав сплава.
- Состав фаз выделения.
- Объемные доли выделений.
- Распределение частиц по размерам для каждого состава.

Допущения модели:

- 1. Частицы имеют сферическую форму.
- 2.Состав выделений постоянен и диффузия в них отсутствует.
- 3.На межфазных границах выделение/матрица устанавливается локальное термодинамическое равновесие.
- 4. Массоперенос контролируется объемной диффузией.

Приближение среднего поля

Компоненты модели

 $\dot{\epsilon}$ - скорость деформации, b – вектор Бюргерса, l – длина свободного пробега дислокации, k_1 и k_2 – коэффициенты 5

$$\frac{dD}{dt} = m\gamma \left(\frac{1}{D} - \frac{1}{D_{cr}}\right) - D \frac{dX}{dt} \ln(N)$$

m - подвижность границ зерен, γ - удельная энергия границы зерна, D_{cr} - критический размер зерна, N - количество новых зерен, образовавшихся в исходном зерне в результате рекристаллизации

 $D_{cr} = \frac{\pi}{6} \left[\sum_{i} (F_i / r_i) \right]$

 F_i - объёмная доля частиц радиуса r_i

$$X = 1 - exp\left(-\frac{\pi}{3}\dot{N}v_b{}^3t^4\right)$$

$$P_{z}$$

$$v_b = m(P_d - P_Z); P_d = \tau (\rho_{Def} - \rho_0) + \frac{4\gamma}{D}; P_Z = \frac{3\gamma}{2} \sum_i (F_i/r_i)$$

N - скорость образования зародышей рекристаллизации; v_b - подвижность границ зерен, τ – средняя энергия, приходящаяся на единицу длинны дислокации

Выбор исходных данных для моделирования

Состав стали в мас.%

С	Mn	Nb	Ti	N	V
0.05	1.66	0.094	0.015	0.0043	0.002

Состав карбонитридов: (Ti_{0.97},Nb_{0.03})(C_{0.04},N_{0.96})_{0.98} Nb(C_{0.98},N_{0.02})_{0.96}

Схема термомеханической обработки из экспериментальной работы*

* E. J. Pavlina, C.J. Van Tyne, J.G. Speer. Effects of combined silicon and molybdenum alloying on the size and evolution of microalloy precipitates in HSLA steels containing niobium and titanium // Materials Characterization. 2015. V. 105. P. 35 – 46.

Гистограммы распределения частиц по размерам после деформации и изотермической выдержки

Серым цветом обозначены экспериментальные данные,

черным цветом результаты моделирования.

9

Выбор исходных данных для моделирования

Состав стали в мас.%

C	Mn	Nb	Ν	Si
0.05	1.88	0.048	0.004	0.04

Состав карбонитрида: Nb(C_{0.64},N_{0.36})_{0.97}

Схема термомеханической обработки из экспериментальной работы*

1250°С 120 сек. Т_{deform} 600 сек. Режимы обработки из экспериментальной работы*

T, °C	Е	έ , c -1
1000	0.3	1
1000	0.3	0.1
1000	0.2	1
1000	0.5	1
1050	0.3	1

* S. Sarkar, A. Moreau, M. Militzer, W.J. Poole. Evolution of austenite recrystallization and grain growth using laser ultrasonics // Metall and Mat Trans A. 2008. V. 39. P. 897 – 907.

Изменение среднего размера зерна аустенита

Синей линией указаны результаты расчетов, красной обозначены экспериментальные результаты.

Предложен метод для моделирования поведения ансамбля карбонитридных выделений и структурных характеристик низколегированных сталей при высокотемпературной деформации. В методе учтено взаимовлияние процессов изменения плотности дислокаций, размера аустенитных зёрен и состояния ансамбля карбонитридных выделений в процессе и после деформации.