Role of nonlocality and Landau damping in the dynamics of a Quantum dot coupled to surface plasmons.

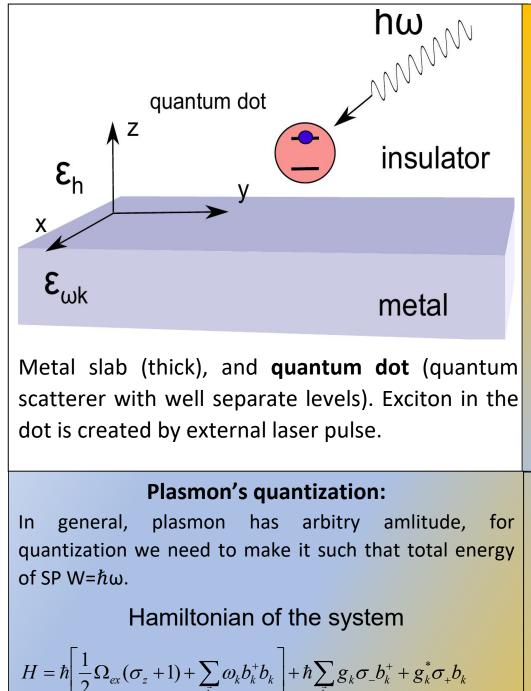
I. A. Larkin¹, A. Vagov², V. M. Axt² and M. D. Croitoru³

1 - Institute of Microelectronics Technology, RAS, Chernogolovka, 142432, Russia

2-Institut für Theoretische Physik III, Bayreuth Universität, Bayreuth 95440, Germany

3-Department of Physics, Federal University of Pernambuco, Recife, Brazil

vaniala2000@yahoo.co.uk



Non-local electromagnetic response

- Delocalized carriers in the metal → spatially non-local response
 - Bulk dielectric susceptibility \rightarrow

Lindhard function

$$\varepsilon(\omega,k) = 1 + \frac{3\Omega_p^2}{(kv_F)^2} \left[1 - \frac{\omega}{2kv_F} \ln \frac{\omega + kv_F}{\omega - kv_F}\right]$$

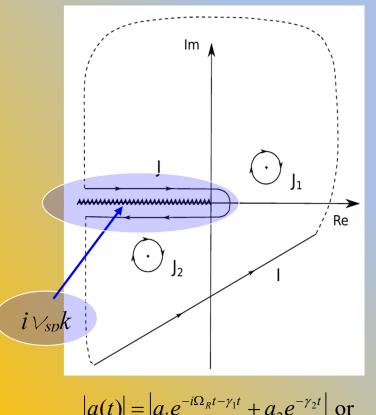
$$\varepsilon(\omega,k) = 1 - \frac{\Omega_p^2}{\omega^2} , \qquad \text{Im}\,\varepsilon = \frac{3\pi\Omega_p^2\omega}{2(kv_F)^3} \sim \frac{\Omega_p^2\omega r_D^3}{v_F^3}$$

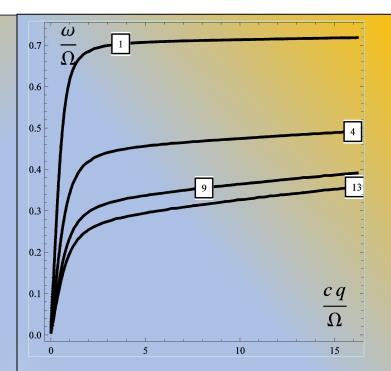
$$k \to 0 \qquad \qquad kv_F > \omega$$

N. W. Ashcroft and N. D. Mermin, *Solid State Physics*, (Thomson, Toronto, 1976)

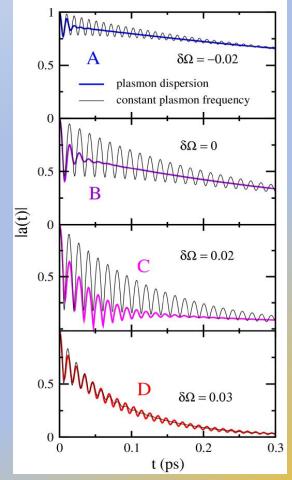
Linear spectrum generates brunch cut -without linear spectrum only poles exist, no branchcut

Inverse Laplace transform contour:





Dispersion of the Surface Plasmon at the boundary of metal with dielectric media. Numbers in the boxes are dielectric constants of the host media.

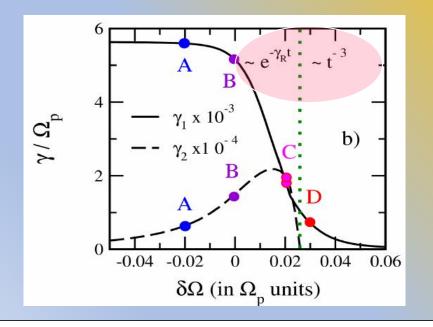


 Ω_{ex} is the frequency of the exciton transition, ω_k is the frequency of the surface plasmon, and g_k are the coupling constants.

Quantum state $|\Psi\rangle = a(t)|\Psi_e\rangle + \sum c_k(t)|\Psi_k\rangle$ Dynamic $i\partial_t a(t) = \Omega_{ex}a(t) + \sum g_k c_k(t)$, equations $i\partial_t c_k(t) = \Omega_k c_k(t) + g_k^* a(t)$ $a(s) = \frac{1}{s + i\Omega_{ex} + K(s)}$ Laplas transform solution $K(s) = \sum_k \frac{|g_k|^2}{s + i\Omega_k} \approx \int_0^\infty \frac{k^2 e^{-2kd} dk}{s + i\Omega_{sp} + \Gamma + iv_{sp}k}$ - Incomplet gamma function

Power law relaxation

When the branch-cut contribution is important (single pole), the time asymptote may change from exponential to a power law. Consequence: much longer Rabi oscillations



$$|a(t)| = |a_1 e^{-i\Omega_R t - \gamma_1 t} + a_2 e^{-\gamma_2 t}|$$
$$|a(t)| = |a_1 e^{-i\Omega_R t - \gamma_1 t} + a_2 t^{-3}|$$

Summary

Non-locality in the electro-magnetic response:

- **1.** is important in systems of finite size
- 2. changes the frequency dispersion (spectrum) of surface plasmons
- 3. for a flat surface leads to the two-velocity frequency dispersion (velocities are very different)
- 4. modifies the damping rate of surface plasmons (Landau damping)
- 5. leads to notable changes in the dynamics of a nearby quantum system (two time relaxation pattern, change in the long-time asymptotic, etc.)

Two type relaxations 1) fast relaxation of the Rabi oscillations ~0.1ps 2) slow monotonous relaxation ~100 ps

References

 Larkin, I.A., Stockman, M.I., Achermann, M., Klimov, V.I.; Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory Phys. Rev. B 69, 121403(R), (2004).
 A. Vagov, I. A. Larkin, M. D. Croitoru, V. M. Axt "Role of nonlocality and Landau damping in the dynamics of a quantum dot coupled to surface plasmons"; Phys. Rev. B 93, 195414, (2016)
 I. A. Larkin, K. Keil, A. Vagov, M. D. Croitoru, and V. M. Axt Superanomalous Skin Effect for Surface Plasmon Polaritons Phys. Rev. Lett. 119, 176801 (2017)

Outline

- 1. Theory with the non-local electro-magnetic response
 - a) Lindhard response
 - b) finite size corrections
- 2. Surface plasmon modes
 - a) electromagnetic problem
 - b) frequency dispersion and non-locality
 - c) Landau damping
- 3. Dynamics of a quantum dot induced by surface plasmons
 - a) effective quantum Hamiltonian
 - b) dynamical patterns & non-locality

Theoretical description for dot-metal coupling

There are three theory components – dot, material carriers, el.-m. fields

- **1.** Dot quantum system with few (two) levels
- 2. Charge carriers in materials material equations, for example Boltzmann kinetic equation
- **3.** Maxwell equations for the fields
- **2.** + **3.** Maxwell equations for the field in the matter

surface plasmons – the modes localized near the metal-insulator surface

Non-local electromagnetic response

Delocalized carriers in the metal \rightarrow spatially non-local response Bulk dielectric susceptibility \rightarrow Lindhard function

$$\varepsilon(\omega,k) = 1 + \frac{3\Omega_p^2}{(kv_F)^2} [1 - \frac{\omega}{2kv_F} \ln \frac{\omega + kv_F}{\omega - kv_F}]$$

$$i\mathbf{k} \cdot \mathbf{P}_{\mathbf{k}} = en_{\mathbf{k}}; \quad \mathcal{F}(\mathbf{k}) = \frac{\mathbf{E}(\mathbf{k}) \cdot \nabla_{\mathbf{p}} f_0}{\mathbf{k} \cdot \mathbf{v} - \omega + i/\tau}$$

$$\varepsilon(\omega,k) = 1 - \frac{\Omega_p^2}{\omega^2}, \quad \operatorname{Im} \varepsilon = \frac{3\pi\Omega_p^2\omega}{2(kv_F)^3} \sim \frac{\Omega_p^2\omega r_D^3}{v_F^3}$$

$$k \to 0 \qquad kv_F > \omega$$

$$i\mathbf{k} \cdot \mathbf{P}_{\mathbf{k}} = en_{\mathbf{k}}; \quad \mathcal{F}(\mathbf{k}) = \frac{\mathbf{E}(\mathbf{k}) \cdot \nabla_{\mathbf{p}} f_0}{\mathbf{k} \cdot \mathbf{v} - \omega + i/\tau}$$

$$4\pi \mathbf{P}(\mathbf{k}) = (\varepsilon - 1) \cdot \mathbf{E}(\mathbf{k})$$

$$(\varepsilon_{k,\omega} - 1) = \frac{4\pi e^2}{k^2} \oiint_{\mathbf{p}} \frac{\mathbf{k} \cdot \nabla_{\mathbf{p}} f_0(\mathbf{p}) d^3 p}{\mathbf{k} \cdot \mathbf{v} - \omega + i/\tau}$$

Plasmon's quantization: In general, plasmon has arbitrary amplitude, for quantization we need to make it such that total energy of SP $\hbar \omega_k$

$$\hbar \omega_k = \iiint_V w dV; \quad w = \frac{1}{16\pi} \left(\frac{\partial}{\partial \omega} (\omega \varepsilon(\omega)) E^2 + H^2 \right)$$

Hamiltonian of the system: dot + SP

$$H = \hbar \left[\frac{1}{2} \Omega_{ex} (\sigma_z + 1) + \sum_{\vec{k}} \omega_k b_k^+ b_k \right] + \hbar \sum_{\vec{k}} g_k \sigma_- b_k^+ + g_k^* \sigma_+ b_k$$

Where Ω_{ex} is the frequency of the exciton transition, ω_q is the frequency of the surface plasmon with the wave vector q, c^+ and c are the creation and annihilation operators of electron in the quantum dot in conduction band, d^+ and d are creation and annihilation operators of the electron in valence band, and b_q^+ and b_q are creation and annihilation operators of the SP. H_I is the interaction Hamiltonian of the two-level dipole with SP and g_q are the coupling constants. To solve Schrödinger equation, we apply Laplace transform:

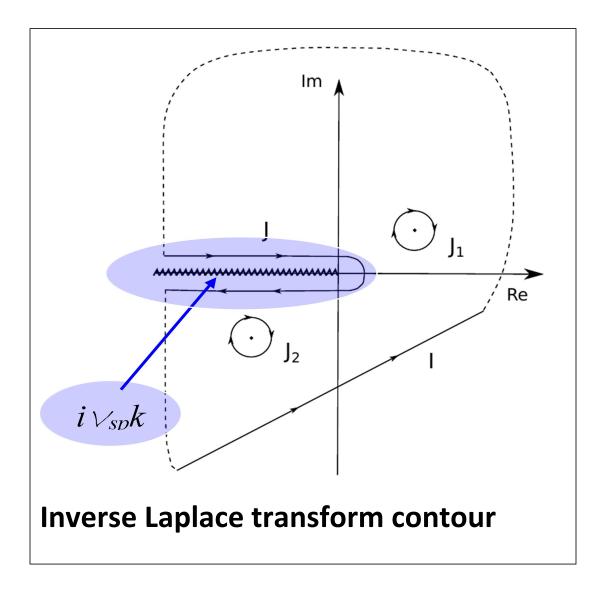
Quantum state
$$|\Psi\rangle = a(t)|\Psi_e\rangle + \sum c_k(t)|\Psi_k\rangle$$

Dynamic $i\partial_t a(t) = \Omega_{ex}a(t) + \sum g_k c_k(t)$,
equations $i\partial_t c_k(t) = \omega_k c_k(t) + g_k^*a(t)$
 $a(s) = \frac{1}{s + i\Omega_{ex} + K(s)}$ Laplace

transform solution

$$K(s) = \sum_{k} \frac{|g_k|^2}{s + i\omega_k} \approx \int_{0}^{\infty} \frac{g^2 k^2 e^{-2kd} dk}{s + i\Omega_{sp} + \Gamma + iv_{sp}k}$$

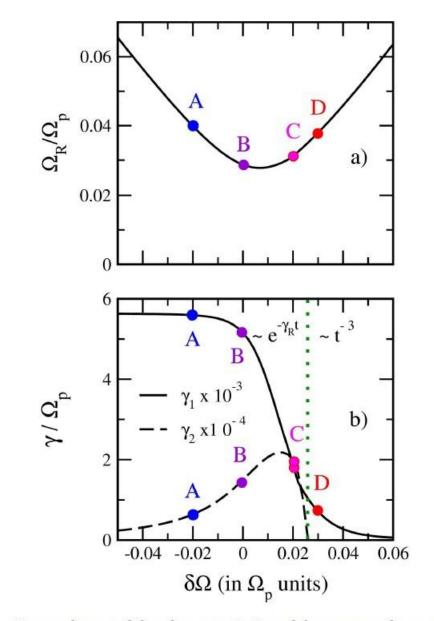
K(s) - Incomplet gamma function With the cut from – infinity to zero.

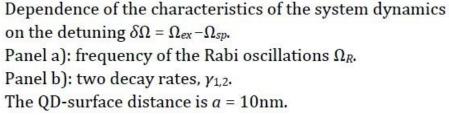


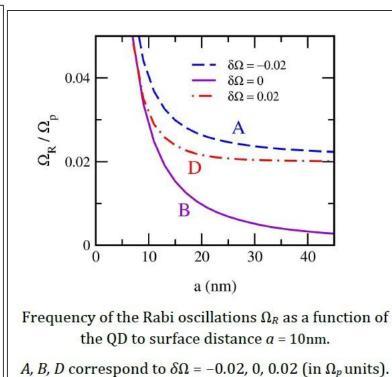
0.01

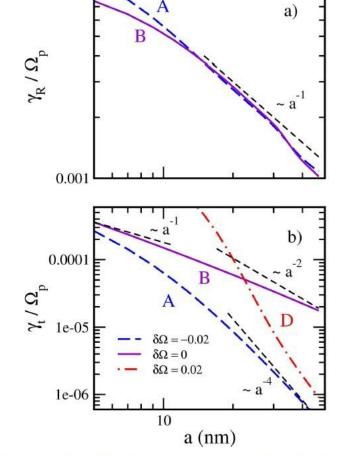
Linear spectrum generates brunch cut: without linear spectrum only poles exist, no branch-cut. As a result $|a(t)| = |a_1 e^{-i\Omega_R t - \gamma_1 t} + a_2 e^{-\gamma_2 t}|$ when contribution from two poles dominates, or $|a(t)| = |a_1 e^{-i\Omega_R t - \gamma_1 t} + a_2 t^{-3}|$. First term is the Rabi oscillations that have fast relaxation ~ 0.1ps, whereas at $\Omega_{ex} > \Omega_{sp} + g^2$ the branch-cut contribution is important (single pole), the time asymptote may change from exponential to a power

law. At this regime system has much longer Rabi oscillations.









Log-log plots of the decay rates γ_R (panel a) and γ_t (panel b) as functions of the QD-surface distance *a* calculated at $\delta\Omega = -0.02$, 0, 0.02 (in Ω_p units). The case $\delta\Omega = 0.02$ (D) is absent for γ_R in panel a) because the corresponding contribution has a power law asymptotic. Panel a) reveals a more complicated dependence $\gamma_R(a)$. At small *a* the additional contribution disappears and one

obtains $\gamma_R \sim a^{-1}$. However, the numerical curves in panel a) are not close to this asymptotes, showing instead a more complicated pattern.

Summary

Non-locality in the electro-magnetic response:

- 1. is important in systems of finite size
- 2. changes the frequency dispersion (spectrum) of surface plasmons
- 3. for a flat surface leads to the two-velocity frequency dispersion (velocities are very different)
- 4. modifies the damping rate of surface plasmons (Landau damping)

5. leads to notable changes in the dynamics of a nearby quantum system (two time relaxation pattern, change in the long-time asymptotic, etc.)