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Metal slab (thick), and quantum dot (quantum
scatterer with well separate levels). Exciton in the
dot is created by external laser pulse.

Non-local electromagnetic response

Delocalized carriers in the metal >
spatially non-local response

Bulk dielectric susceptibility =

Lindhard function
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N. W. Ashcroft and N. D. Mermin, Solid State
Physics, (Thomson, Toronto, 1976)
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Dispersion of the Surface Plasmon at the
boundary of metal with dielectric media.

Numbers in the boxes are dielectric
constants of the host media.

Plasmon’s quantization:
In general, plasmon has arbitry amlitude, for
guantization we need to make it such that total energy
of SP W=hw.

Hamiltonian of the system

H= hB Q.. (o, +1)+). a)kb,jbk} +h) g,0.b, +g.0,b,
k k

Q  1is the frequency of the exciton transition, ®, is the

frequency of the surface plasmon, and g are the coupling
constants.

Quantum state “P >: a(t)

)+ e () ,)
Dynamic i0,a(t) =Q, a(t)+ Z g.c, (1),
equations i0,c, (¢) = w,c, (t)+ g a(t)
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Linear spectrum generates brunch cut --

without linear spectrum only poles exist, no branch-
cut

Inverse Laplace transform contour:
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Two type relaxations
1) fast relaxation of the Rabi
oscillations ~0.1ps
2) slow monotonous relaxation ~100 ps

Power law relaxation

When the branch-cut contribution is important (single
pole), the time asymptote may change from exponential
to a power law. Consequence: much longer Rabi
oscillations
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Summary
Non-locality in the electro-magnetic response:
1. is important in systems of finite size

2. changes the frequency dispersion (spectrum) of
surface plasmons

3. for a flat surface leads to the two-velocity
frequency dispersion (velocities are very different)

4. modifies the damping rate of surface plasmons
(Landau damping)

5. leads to notable changes in the dynamics of a
nearby quantum system (two time relaxation
pattern, change in the long-time asymptotic, etc. )
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Outline
1. Theory with the non-local electro-magnetic response
a) Lindhard response

b) finite size corrections
2. Surface plasmon modes
a) electromagnetic problem
b) frequency dispersion and non-locality
¢) Landau damping
3. Dynamics of a quantum dot induced by surface plasmons
a) effective quantum Hamiltonian

b) dynamical patterns & non-locality

Theoretical description for dot-metal coupling

There are three theory components — dot, material carriers, el.-m. fields
1. Dot — quantum system with few (two) levels
2. Charge carriers in materials — material equations, for example Boltzmann kinetic equation
3. Maxwell equations for the fields
2.+ 3. Maxwell equations for the field in the matter
surface plasmons — the modes localized near the metal-insulator surface

Non-local electromagnetic response
Delocalized carriers in the metal >  spatially non-local response

Bulk dielectric susceptibility = Lindhard function
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Plasmon’s quantization: In general, plasmon has arbitrary amplitude, for quantization we need to make it
such that total energy of SP A«

ha, = jﬂde; W= 16172 (8(1) (we(w))E? +H2j

Hamiltonian of the system: dot + SP

1 ,
H=h EQQX(GZ +1)+> obb, |+h) g,0.bf +g.0.b,
k k




Where €2, 1s the frequency of the exciton transition, o, 1s the frequency of the surface plasmon with the

+ . oy . . . .
wave vector g, ¢ and c are the creation and annihilation operators of electron in the quantum dot 1n
conduction band, d and d are creation and annihilation operators of the electron in valence band, and
b q+ and b_ are creation and annihilation operators of the SP. H, 1s the interaction Hamiltonian of the two-

level dipole with SP and g_ are the coupling constants. To solve Schrodinger equation, we apply Laplace
transform:

Quantum state W )=a(¥)+ YO ¥,)
Dynamic i0,a(t) =Q_ a(t)+ z g.c.(b), m )

equations i0.c, (¢) = w,c, (t)+ g,a(t)

1 i
a(s) = Laplace | J @
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transform solution
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With the cut from — infinity to zero.

Linear spectrum generates brunch cut: without linear spectrum only poles exist, no branch-cut. As a

_ —iQpt—yt —yt . . . _ —iQpt—y t -3
result [a(t)[= ‘ale Ctae” ‘ when contribution from two poles dominates, or a(t)|= ‘ale +at

First term 1s the Rabi1 oscillations that have fast relaxation ~ 0.1ps, whereas at Q, > Q +g° the branch-

cut contribution 1s important (single pole), the time asymptote may change from exponential to a power
law. At this regime system has much longer Rabi oscillations.

, 0.01
-
0.06
0.04 —
Q™ 0.04 = <
= e e
dﬂd G 002
0.02 - - &
- " . 0.001
Y I Y N I B ?
a (nm)
Frequency of the Rabi oscillations () as a function of
| the QD to surface distance a = 10nm.
A, B, D correspond to 6€1 = -0.02, 0, 0.02 (in (2, units).
o
G |
S—
.
a (nm)
"> o k Log-log plots of the decay rates yr(panel a) and y:(panel b)
1 I I ] as functions of the QD-surface distance a calculated at
=T 4 I | § ‘ £l face d lculated
-0.04 -0.02 0 002 0.04 0.06 5Q=-0.02, 0, 0.02 (in Qp units).
; s The case 6Q = 0.02 (D) is absent for yrin panel a) because
0Q (1[’] Qp Llﬂlt&;) the corresponding contribution has a power law

asymptotic.
Dependence of the characteristics of the system dynamics Panel a) reveals a more complicated dependence yz(a). At
on the detuning 6 = Qex—Qsp. small a the additional contribution disappears and one
Panel a): frequency of the Rabi oscillations Q. obtains yr~ a 1. However, the numerical curves in panel a)
are not close to this asymptotes, showing instead a more

Panel bl two decqyrates; yiz complicated pattern

The QD-surface distance is @ = 10nm.




Summary
Non-locality in the electro-magnetic response:
1. 1s important in systems of finite size
2. changes the frequency dispersion (spectrum) of surface plasmons
3. for a flat surface leads to the two-velocity frequency dispersion (velocities are very different)
4. modifies the damping rate of surface plasmons (Landau damping)

5. leads to notable changes in the dynamics of a nearby quantum system (two time relaxation pattern,
change in the long-time asymptotic, etc.)



