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An analytical description of the interrelation of depletion, segregation and
decomposition of a binary alloy in a nanosystem is presented. Size-induced
shift of the decomposition cupola appears to be a sum of two terms. The first
(related to depletion caused by new phase formation) is inversely proportional
to the size R to the power of 3=4. The second (related to segregation at external
surface) represents the traditional 1/R dependence. Size-induced ‘splitting’ of
the decomposition cupola is also predicted and analytically described.

Keywords: decomposition; nucleation; depletion; segregation; thermodynamics;
nanostructure; size effect

1. Introduction

Recent developments in nanoscaled reactions – change of the observed phase spectrum
in point contact reactions in metal-silicon nanosystems [1–3], in exothermic reactions of
Ni–Al and Ni–Zr nanosystems [4,5], change of solubility in binary alloys after grain
refinement to nanosize [6–12] – motivate revisiting the old problem of the size effect in
phase transformations of binary nanosystems. This size effect is usually ascribed to the
capillary effect (Gibbs–Thomson law) [13]. The chemical potential of a system with a
curved interface shifts proportionally to the curvature (or inversely proportional to the
radius, if the interface is purely spherical or purely cylindrical). Well-known examples
are the size (1/R) effect for melting temperature and for the equilibrium concentration
in the vicinity of a nanoparticle interface.

On the other hand, interface curvature is not the only peculiarity of nanoparticles.
Another peculiarity is also very important for binary and multicomponent particles – it is a
depletion effect leading to the shift of the solubility limit, with respect to the bulk phase
diagram [14–16]. Moreover, the solute concentration in the parent phase, corresponding to
the solubility limit, now significantly differs from the concentration in this same phase in
the equilibrium two-phase state after phase separation within nanoparticle –
‘thermodynamic hysteresis’ (in the bulk case, these two concentrations coincide) [17].
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One more peculiarity is an influence of segregation on the bulk properties. This
effect is also related to finite volume and significant fraction of surface atoms among all
atoms of the nanoparticle. A well-known example is the dissolution of cementite after
severe plastic deformation of steel due to nanograined structure formation, and a
corresponding abrupt increase in the grain-boundary network able to accommodate the
segregated carbon atoms without compound formation [7–9,18,19].

Unlike the capillary effect, the depletion and segregation effects in nanoparticles, up
to now, have had only numerical description. For example, it was not clear if the shift
of solubilities and of phase equilibria in nanoparticles obeys some power law or another
kind of size dependence.

In this work, for the first time, we present an analytical description of the depletion
that caused size effect on the phase diagrams of binary nanoalloys and its synergy with
surface segregation. We discover the combination of two power laws – R–3/4 and R–1 –
for both shifts of the solubility limit and of equilibrium states under phase separation in
nanoparticles.

As we just mentioned, the transformation-induced depletion of the nanosystem
becomes important for binary and multicomponent systems, in which phase transforma-
tion is related to the concentration change. The reason for the depletion effect in phase
transformation is rather transparent: to form a critical nucleus of phase beta, enriched in
the B-component, the system should deplete the surrounding parent phase. If the vol-
ume of parent phase is limited (typically, nanosized), the system may just not have a
sufficient number of B-atoms, needed for the viable nucleus of new, beta-phase. In
terms of the dependence of the Gibbs free energy change on the nucleus/embryo size, it
means that this dependence will be (in this case) monotonically increasing, without bar-
rier and local or global second minimum (the first one corresponds to zero size of
embryo) – curve 1 in Figure 1 (for details see [14–17]).

It means that at the concentration and temperature inside the decomposition cupola
(miscibility gap) of the bulk samples, the nanosized systems may appear to be stable.

Figure 1. Qualitative dependence of the excess Gibbs free energy ΔG on the number of atoms n
in the new phase nucleus at different total numbers of atoms in the particle
(N1 <N2 <N3 <N4 <N5): (1) – decomposition is impossible; (2) – marginal case, after which (with
increasing particle size) decomposition becomes possible; (3) – decomposition is possible but
unfavourable; 4 –marginal case, after which (with increasing particle size) decomposition
becomes favourable; (5) – decomposition is possible and favourable (details can be found in
[14–17, 20 chapter 13, 21]).
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So, one can expect the shift of solubility limits – actually, increasing solubility with
decreasing particle size at any fixed temperature. On the other hand, after reaching and
crossing the solubility limit and, hence, successful nucleation of new phase in the nano-
particle, the parent phase is significantly depleted (contrary to macroscopic systems, see
below). So, it should be pointed out that after the decomposition in a particle has actu-
ally taken place, actual concentration in it becomes different from the concentration in
the parent phase at which decomposition becomes possible (Figure 2). This ‘splitting’
becomes negligible for macrosamples, so that one can speak about size-induced bifurca-
tion of the equilibrium lines at phase diagrams of nanosystems. This problem was
explicitly formulated in [17] and later discussed in more detail in [20,21].

One of the substantial drawbacks of the mentioned approach was a lack of analyti-
cal formulae describing the combined size and depletion effects on a phase transforma-
tion. In particular, it was not clear what kind of size dependence correctly describes the
depletion effects. In this paper, we present:

(1) a simple analytical approximation which is valid in a rather wide parameter
range and gives an analytical description of decomposition in nanoparticles;

(2) a simplified analytical approximation for segregation in a nanoparticle without
decomposition;

(3) an analytical description of simultaneous decomposition and segregation in a
binary nanoparticle.

2. Decomposition without segregation

To illustrate the main ideas, we consider the decomposition of metastable (supersatu-
rated) solid solution α′ containing a finite total number N of A and B atoms, with initial

Figure 2. (a) Qualitative concentration dependence of the Gibbs free energy per atom of the
parent phase α and of line compound phase i with Ci = 1/2. The composition Cbin of the bulk
parent phase in the equilibrium with intermediate phase is determined by the common tangent.
The driving force Δg of the bulk transformation is determined by the supersaturation magnitude.
(b) Left half of corresponding phase diagram constructed according to common tangent rule.
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average concentration (atomic fraction) C of component B, into strictly stoichiometric
phase ‘i’, with strictly fixed concentration Ci, and into depleted parent solution α. The
phase diagram of this system for the concentration interval 0 <C<Ci= 0.5 is shown in
Figure 2. Below, we will see what is changed, and how, in the phase diagram for the
case of finite particle size.

2.1. Model and basic equations

We consider homogeneous nucleation of the new phase inside a particle of radius R,
which is thermodynamically favourable under the condition γi/α< γi/V� γα/V for the sur-
face tensions of interfaces i/α, i/V and α/V. We take into account depletion of the parent
solution due to formation of the spherical nucleus (embryo) of phase ‘i’, containing n
atoms, inducing depletion of the parent solution α. So far, we neglect a possible
dependence of surface tension on composition which would lead to segregation and
corresponding shift of composition in the ‘bulk’ of nanoparticle. The condition of a
matter conservation, under the constraint of the stoichiometry of the i-phase, gives the
concentration in the depleted parent phase as

Ca ¼ CN � Cin

N � n
: ð1Þ

The change in Gibbs free energy induced by the nucleation is

DG ¼ ginþ gaðCaÞ � ðN � nÞ � gaðCÞN þ c � 4pr20n2=3: ð2Þ

Here, gi and gα are the values of Gibbs free energy per atom for the new and parent
phases, γ is the surface tension of the interface i=a; r0 ¼ 3X

4p

� �1=3
is the atomic size and

X is the atomic volume.
Further, we will use the ratio ɛ≡ n/N as a small parameter and will expand every-

thing into series including second-order terms. Neglecting the higher order terms should
be self-consistent, and we will formulate the self-consistency condition after obtaining
analytical results. In particular, our approximation will be very questionable in the
vicinity of the decomposition cupola top.

Simple algebra gives:

Ca ¼ C � Cie
1� e

ffi C � ðCi � CÞe� ðCi � CÞe2; ð3Þ

DG ffi cia � ð4pr20Þn2=3 � Dg � nþ 1

2
ðCi � CÞ2g00

a

n2

N
; ð4Þ

DG=N ffi cia � ð4pr20=N 1=3Þe2=3 � Dg � eþ 1

2
ðCi � CÞ2g00a e2

¼ 3ciaX
R

e2=3 � Dg � eþ 1

2
ðCi � CÞ2g00a e2: ð40Þ
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Here, g00a ¼ @2g
@C2 jC is the positive value for stable and metastable parent phases,

Dg ¼ gaðCÞ þ ðCi � CÞ @ga
@C

jC � gi: ð5Þ

is the bulk driving force for nucleation per atom of the nucleus (Figure 3).
Expansion like Equation (4′) was recently used in [22] for the description of void

nucleation in a spherical particle supersaturated by vacancies from the surrounding
growing phase.

The last term in Equation (4) is size-dependent (inversely proportional to total num-
ber of atoms, or, in other words, to the volume). In the limiting case, N→∞, one
obtains the classical equation for nucleation barrier with positive surface term
c � 4pr20n2=3 hindering nucleation and negative (in decomposition region) bulk term
–Δg · n, leading to the nucleation inside the bulk decomposition cupola (binodal),
determined by

DgðCbin; TÞ ¼ 0; or gaðCbinÞ þ ðCi � CbinÞ @gaðC; TÞ
@C

jCbinod � giðTÞ ¼ 0: ð6Þ

We will consider below a metastable parent phase, excluding spinodal decomposi-
tion, so that the second derivative with respect to concentration will be always positive
and will also hinder nucleation. This situation is qualitatively similar to suppression of
nucleation by a steep concentration gradient [23–27].

Let us denote K � ðCi � CÞ2g00a . Note that K > 0. We will fix the average concentra-
tion and the temperature C; T of the particle and will change the total number N of

Figure 3. Phase diagram for different particle sizes: 1 – binodal for macrosystem (size R
formally tending to infinity) calculated from common tangent rule, 2 – decomposition (solubility)
curve (analytical), 3 – numerical calculation, 4 – depleted solution. (a) ρ= 15, (b) ρ= 50, where
q ¼ RKTc

2cX .
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atoms in this particle. Then, with increasing N, one by one, we derive the behaviours
described by the curves 1–5 in Figure 1.

In case (1) of small N, the transformation is totally, thermodynamically forbidden,
i.e. the value DGðn=N ;C; TÞ monotonically increases with growing embryo size (num-
ber of atoms) n. In case (2) of N ¼ N�ðC; TÞ, one has a first crossover of regimes,
namely from totally suppressed transformation to possibility of metastable new phase
formation. For this marginal regime, the curve ΔG(n) has an inflection point, at which
both first and second derivatives are equal to zero:

@DGðnÞ
@n

¼ 0;
@2DGðnÞ

@n2
¼ 0: ð7Þ

Substitution of Equation (4) into Equation (7) immediately gives:

n� ¼
8
9 � c4pr20

Dg

� �3

; N � ¼ 4K

Dg
n� ¼ 4K

�
8
9 � c4pr20

�3
ðDgÞ4 : ð8Þ

For self-consistency, the condition

n�

N � ¼
Dg
4K

\1 ð9Þ

should be satisfied (see below).
Another characteristic point (case 4 in Figure 2), N ¼ N��ðC; TÞ, determines a tran-

sition from the metastable new phase to the stable one, when the second minimum of
ΔG(n) becomes the same depth as the first one. Starting from this point, decomposition
becomes favourable. It means the following set of equations:

DGðnÞ ¼ 0;
@DGðnÞ

@n
¼ 0: ð10Þ

Substitution of Equation (4) into Equation (10) gives:

n�� ¼
4
3 � c4pr20

Dg

� �3

¼ 27

8
n�; ð11aÞ

N �� ¼ 2K

Dg
n�� ¼ 2K

4
3 � c4pr20
� �3

ðDgÞ4 ¼ 27

16
N �: ð11bÞ

For self-consistency, the condition

n��

N �� ¼
Dg
2K

\1 ð12Þ

should be satisfied (see below).
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2.2. Size-induced solubility shift

Since Equation (11b) corresponds to equality between single-phase (first minimum
ΔG = 0 at n= 0) and two-phase states (ΔG = 0 at n= n⁄⁄, when C=C⁄⁄), it is natural to
treat it as a condition of solubility limit; for this, we rewrite it in a following form:

ðDgðC��;TÞÞ4 ¼ 2KðC; TÞ
N

4

3
� c4pr20

� �3

¼ 2ðCi � C��Þ2g00aðC��; TÞ
N

4

3
� c4pr20

� �3

: ð13Þ

It is natural that for the macroscopic samples (N→∞), Equation (13) is reduced to
the usual binodal curve (6). Comparing Equation (13) with Equation (6), and assuming
size-induced shift of the binodal, dC�� � C��ðTÞ � CbinðTÞ as a small value with
negligible second order, one obtains:

ðdC��Þ4 @Dg
@C

� ����
bin

�4

ffi 2ðCi � CbinÞ2g00aðCbinÞ
N

4

3
c � 4pr20

� �3

:

(Namely, at the binodal curve, according to Equation (6), Δg = 0. Thus, the first
non-vanishing term in the Taylor expansion is a product of the first derivative and the
concentration shift.)

Taking into account that @Dg
@C ¼ ðCi � CÞg00a , we obtain the shift of the binodal:

dC�� ffi 2

N 1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci � Cbin

p
2
3 � c4pr20
g00
aðCbinÞ

� �3=4

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci � Cbin

p 2cX
g00
aR

� �3=4

: ð14Þ

Note that the size dependence, d~N / R�3=4, differs from well-known effect R�1,
arising from surface influence.

2.3. “Splitting” of the shifted binodal

In the bulk case, crossing the binodal means tending to supersaturation and, hence, the
practically unchanged composition of the parent phase after precipitation of the practi-
cally zero volume fraction of the new phase. This situation changes dramatically in a
nanosystem. Since the number of atoms in the formed new phase can be comparable
with the total number of atoms, one cannot neglect depletion even just after reaching
the solubility limit [17,21,20]. It means that one should distinguish the solubility limit
and composition of the parent phase after decomposition. Thus, the shifted binodal is
split: after reaching the solubility limit C��ðTÞ ¼ CbinðTÞ þ dC��, and formation of a
stable particle of the new phase (second minimum at curve 4 at Figure 1), the parent
phase will have a concentration (according to Equation (1))

C���ðTÞ ¼ CbinðTÞ þ dC�� � Cin��

N �� : ð15Þ

Substitution of Equations (11) and (15) gives:
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C���ðTÞ ffi CbinðTÞ þ dC�� 1� Ci

2ðCi � CbinÞ
� �

: ð16Þ

2.4. Self-consistency condition

Conditions (9) and (12) of self-consistency (note that if condition (12) is fulfilled, then
condition (9) is also fulfilled), taking into account a Taylor expansion of the driving
force (Dg ffi 0þ dC � @Dg@C ¼ dC � ðCi � CbinÞg00a ), give:

Dg
2K

ffi dC
2ðCi � CbinÞ\1: ð17Þ

Combining Equation (17) with Equation (14), one obtains:

ðCi � CbinÞ2N 1=3[
2
3 c � 4pr20
g00aðCbinÞ ; ð18aÞ

or, in other form,

2cX
R

\ðCi � CbinÞ2g00aðCbinÞ: ð18bÞ

All the curves depicted in Figure 3 satisfy condition (18), as was checked by
numerical calculations in Section 2.5.

2.5. Comparison with exact numerical result for regular solid solution

We compared the just mentioned analytical results with the exact numerical result for
the simple case when α-phase is a regular solid solution, and the Gibbs potential of the
intermediate line compound is constant. It can be easily found that the results are deter-
mined by the dimensionless parameters q ¼ R�kTc

2cX , and the “depth” of the intermetallic
gi�gað0Þ

kTc
, where Tc is the maximum temperature of the decomposition cupola for the bulk

case. In accepted notations, the expression for the Gibbs free energy change per atom,

according to Equation (2), is DG
NkT ¼ ~g0 � eþ ~gðcÞ � ð1� eÞ þ 3

2
e2=3
q � ~gðc0Þ, where ~g0 ¼

gi�gað0Þ
kT ¼ gi�gað0Þ

kTc
1
s ; ~g ¼ 4

s ðln 2þ gi�gað0Þ
kTc

Þ � cð1� cÞ þ c ln cþ ð1� cÞ lnð1� cÞ and s ¼
T
Tc
. In our calculations, we have chosen gi�gað0Þ

kTc
¼ �1. One can see that the analytic

approximation works surprisingly well. The larger particle size is, the better the coinci-
dence with the exact solution. It follows the exact solution well starting from ρ� 20,
which corresponds (by the order of magnitude) to a real particle size about 10–100 nm.
Indeed, if one supposes that the critical temperature is about 103 K, surface tension
γ� 1 J/m2, atomic volume Ω� 10�29 m3, then at R= 15 nm, we have ρ = 10.35. It was
found that the analytical approximation works surprisingly well even if the expansion
parameter n

N is not small: in the case when the size of precipitate almost reaches the size
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of the particle, its value is close to unity, at that C⁄⁄�Ci. But, as follows from Figure 3
(curves 2 and 3), the relevance of the analytical approximation is still satisfactory.

3. Segregation without decomposition

Now, let the external surface tension linearly depends on the composition:

caV ðC�Þ ¼ cBC� þ ð1� C�ÞcA; @caV
@C�

¼ cB � cA � �Dca. Of course, a linear approxima-

tion is rather crude – therefore, results below are only qualitative. We suggest that all
segregation proceeds with surface concentration C0

� in a narrow surface layer of width
δ containing approximately 4πR2δ/Ω atoms. The fraction of atoms in the surface
layer is

b ¼ 4pR2d
4pR3=3

¼ 3d
R
:

The Gibbs free energy of the system in this case is:

G ¼ gaðC0Þ � ðN � bNÞ þ gaðC0
�ÞbN þ caV ðC0

�Þ � 4pR2: ð19Þ

Constraint of matter conservation gives:

C0 � ð1� bÞ þ C0
�b ¼ C ) @C0

@C0
�

¼ �b
1� b

: ð20Þ

Minimization of function G in Equation (19) with account of constraint (20) gives
the condition of equilibrium segregation in the nanoparticle:

@gaðC0
�Þ

@C0
�

� @gaðC0Þ
@C0 ¼ �X

d
@caV
@C�

¼ XDca
g00
ad

: ð21Þ

Assuming the second derivative g00a is independent of concentration at least within
the interval ðC0; C0

�Þ, one gets the equilibrium concentrations:

C0 ¼ C � 3XDca
g00
aR

; ð22Þ

C0
� ¼ C þ XDca

g00
ad

ð1� bÞ; ð23Þ

C0
� � C0 ¼ XDca

g00ad
: ð24Þ
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4. Synergy of decomposition and segregation

Now let us have both, namely the decomposition inside a nanoparticle and segregation
at the external surface of this particle (heterogeneous formation of the new phase at the
surface will be discussed elsewhere).

The Gibbs free energy in this case is:

G ¼ ginþ gaðC0Þ � ðN � eN � bNÞ þ gaðC0
�ÞbN þ caV ðC0

�Þ � 4pR2 þ c � 4pr20n2=3 ð25Þ

with constraint of matter conservation:

Cieþ C0 � ð1� e� bÞ þ C0
�b ¼ C: ð26Þ

First of all, we optimize the segregation at a fixed volume fraction ɛ of new phase.
This gives

C00 ¼
C � Cie� 3XDca

g00aR

1� e
; ð27Þ

C00
� ¼

C � Ce þ ð1� e� bÞ XDca
g00a d

1� e
; ð28Þ

C00
� � C00 ¼ XDca

g00ad
: ð29Þ

Further, simple algebra using a Taylor series expansion in ɛ gives the following
difference between Gibbs free energies with and without the new phase:

ðGðeÞ � Gðe ¼ 0ÞÞ=N ¼ 3ciaX
R

e2=3 � D~g � eþ
eK
2
e2; ð30Þ

D~g¼ gaðCÞ þ ðCi � CÞ @ga
@C

����
C

�gi � 3XDca
R

ðCi � CÞ ¼ Dg � 3XDca
R

ðCi � CÞ; ð31Þ

eK ¼ Ci � C � 3XDca
Rg00

a

� �2

g00
a ¼ K � 1� 3X�ca

Rg00
aðCi � CÞ

� �2

: ð32Þ

Then, considerations, analogous to those in Section 2.2, give us the following
expression for the shift of binodal containing two terms:

dC�� ffi 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�Cbin

p 2cX
g00
aR

� �3=4

þ 3XDca
Rg00

a

: ð33Þ
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The first term is due to depletion of solute in the parent phase by the new phase.
The second term is due to segregation and can be positive as well as negative.

The first term is larger than the second one or comparable with it at R[ 2cX
g00a

� 	
� Dcacia

,
which is about couple of nanometers for typical parameter values.

5. Conclusions

The analytical description of the interrelations between the size effect, segregation and
the decomposition in a small volume (e.g. a nanoparticle) is suggested. Size-induced
shift of the solubility limit and splitting of binodal line would both be inversely propor-
tional to the linear size to the power 3=4 (or total volume to the power 1=4) in the absence
of segregation. Segregation adds a term inversely proportional to size. The analytical
approach is applicable for comparatively large sizes or/and comparatively wide decom-
position cupola (miscibility gap). In general, the presented approach analytically
describes significant shifts of phase equilibrium for nanoparticles within the size range
10–100 nm. This approach should be generalized for the case of segregation at grain
boundaries instead of the free surface [28] and heterogeneous nucleation in nanocrystal-
line materials. It seems also natural to extend our approach to the size effect on the
spinodal curve which has been recently analysed in [29,30]. This will be done else-
where.
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Appendix
Derivation of phase equilibrium shift at synergic influence of depletion by precipi-
tation and of segregation at external surface

Here, we analyse in more detail the expressions (30–32) for simultaneous action of depletion and
segregation. As in all previous considerations, we will treat the phase separation as becoming pos-

sible if simultaneously the two conditions are satisfied: ΔG(n) = 0, @DGðnÞ
@n ¼ 0 (see Equation (10)).

The same transformations, as in Section 2.1, give:

N �� ¼ 2eK 4
3 � c4pr20
� �3

ðD~gÞ4 : ðA:1Þ

To find the shift of phase line, we can rewrite this expression as

D~g C�� þ dC��;
1

R

� �
¼ 2eK 4

3 � c4pr20
� �3

N

 !1=4

: ðA:2Þ

For the bulk case (R→∞), the phase equilibrium means zero driving force:
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�~g C��;
1

R
! 0

� �
¼ 0: ðA:3Þ

Expanding the left-hand side of Equation (A2) into a two-dimensional Taylor series
over small variables δC⁄⁄ and 1

R, taking Equation (31) and Equation (A3) into account
and neglecting the higher orders of small variables ɛ, 1

R (squares and products), one
obtains:

ðCi � CbinÞg00ad�� �
3Xdca
g00a

1

R
ffi 2K

4
3 � c4pr20
� �3

R3=r30

 !1=4

; ðA:4Þ

which immediately gives

dC�� ffi 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci � Cbin

p 2cX
g00aR

� �3=4

þ 3Xdca
Rg00

a

ðA:5Þ
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