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Abstract 

High-pressure torsion has been successfully applied to polycrystalline Cu–Al–Ni shape memory alloys that had been prepared by 
a powder metallurgy methodology. The samples before and after high-pressure torsion were characterized by optical and electron 
microscopy and differential scanning calorimetry. After high-pressure torsion the alloys became ultra-fine grained and the 
present phases were identified. 
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Selection and Peer-review under responsibility of the chairs of the International Conference on Martensitic Transformations 
2014. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).  

Keywords: Cu–Al–Ni; shape memory alloys; Severe plastic deformation; High pressure torsion; martensitic transformations; nano grains 

1. Introduction 

Cu-based shape memory alloys (SMAs) have attracted much attention in the last years as an alternative to the 
conventional Ti–Ni binary alloys because they can exhibit higher transformation temperatures, a large superelastic 
window, small thermal hysteresis as well as high damping coefficient [1]. Furthermore, recent investigations on Cu–
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Al–Ni SMAs have confirmed a completely recoverable superelastic behavior even at nano-scale (less than 50 nm), 
what is not the case for Ti-Ni alloys [2,3]. However, Cu–Al–Ni SMAs are brittle in conventional polycrystalline 
state due to their high anisotropy and their large grain size. This problem can be overcome either using single 
crystals growth or reducing the grain size. Powder metallurgy of Cu–Al–Ni alloys has been particularly successful in 
the reduction of gain size and in the improvement of both ductility and shape memory behavior [4-8].  

High-pressure torsion (HPT) is a well-established severe plastic deformation procedure for obtaining nanometer 
and submicrometer grains and microstructures or even an amorphous phase in bulk materials [9-11]. Both diffusive 
[12,13] and displacive phase transformations [14,15] promoted by HPT have been reported for different materials. In 
particular, this technique has already been used for NiTi SMAs quite extensively [11,15], however, this is not the 
case for Cu-based SMAs. The present work has been performed with the aim of analyzing the feasibility of applying 
HPT to Cu–Al–Ni SMAs in order to obtain nano-grained materials with improved thermo-mechanical and functional 
properties. 

2. Materials and experimental procedure 

Two Cu–Al–Ni SMAs (Alloy C: Cu–13.2 wt.% Al–3.3 wt.% Ni; Alloy B: Cu–14.4 wt.% Al–4.2 wt.% Ni) with 
slightly different concentration and, consequently, different transformation temperatures were selected according to 
[4,5,16]. The starting pure elements (99.99 % Cu, 99.99 % Al and 99.97 % Ni) were pre-alloyed in an Ar 
atmosphere and then atomized by Ar at 2.3 MPa using a Leybold Viga 2S vertical atomizer to obtained the Cu–Al–
Ni SMA powders. The particle size fraction used was 25-50 μm. Hot isostatic pressing (HIP) at 850°C, 140 GPa for 
2 h in an ABB Autoclave Systems Inc. QIH-3 device was applied to compact the SMAs powders. Afterwards, the 
alloys were hot-rolled at 850 °C with a thickness reduction of 2% per step down to a thickness of about 0.8 mm. In 
the last step before HPT, the hot-rolled alloys were annealed at 900 °C, 0.5 h in Ar and quenched in cold water 
(0°C). As a result, one of the samples, B, is in austenite state at room temperature (Fig. 1a), whereas the second one, 
C, is in martensite state (Fig. 1b). For more details on the alloy production see Refs. [4,5].  

For HPT processing the 0.6 mm thick discs (10 mm in diameter) were cut by spark erosion. HPT was performed 
at room temperature under a pressure of 5 GPa in a Bridgman anvil-type unit (5 rotations with a rate of 1 rpm) using 
a custom built computer controlled HPT device (W. Klement GmbH, Austria). The measured torsion torque 
increased during 1-2 anvil rotations and then remained unchanged (i.e. reached the steady-state as in Refs. [17,18]). 
The anvils/sample slippage is negligible . The sample thickness after HPT was slightly smaller than 0.6 mm.  

Samples for microstructural and calorimetic investigations were cut from the HPT-processed discs at a distance of 
3 mm from the sample center. Standard methallographic methods were applied to obtain polished specimens. The 
initial inspection was carried out using polarized light on an optical Leica DMRXA microscope. Scanning electron 
microscopy studies were also performed using Jeol JSM 6400/7000 F microscopes. Details about the fine 
microstructure and phase structure were investigated using a Philips CM200 super TWIN (200 kV) transmission 
electron microscope (TEM) equipped with an EDAX EDX system. Electron transparent lamellae were prepared by 
focused ion beam (FIB) standard methods using a FEI Helios NanoLab Dual Beam 650 equipment. Differential 
scanning calorimetry (DSC) measurements were performed in a TA DSC Q2000 equipment (heating rate 10 K/min). 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Optical micrographs showing the overall microstructure of the Cu–Al–Ni SMA B (a) and C (b) after ice-quenching from 900 ºC. 
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3. Results and discussion 

Figure 2 shows the ultra-fine microstructure obtained in both Cu–Al–Ni polycrystalline SMAs upon HPT. A 
strong grain size reduction is evident with respect to the starting alloys. The particle diameter and/or the width of 
martensite self-accommodating groups are clearly smaller than 200 nm. It is important to emphasize that, to the best 
of our knowledge, severe plastic deformation, in particular HPT, was successfully applied for the first time on this 
type of SMAs at room temperature. Previous attempts of deformation at low temperatures lead directly to the falling 
apart of the material, due to its extreme brittleness, and, for this reason, hot-rolling at high temperatures was 
necessary to obtain polycrystalline Cu–Al–Ni bulk SMAs [4,5]. In the literature, only one work dealing with the 
microstructural evolution during mechanical alloying of an 82Cu–14Al–4Ni powder mixture mentioned severe 
plastic deformation in Cu–Al–Ni SMAs, but no results on bulk consolidated samples are reported [19]. 

Going to the details of the ultra-fine microstructure, TEM investigations of sample B indicated that the alloy 
consists mainly of martensite; no austenite was detected (Fig. 2a). According to the electron diffraction patterns 
(EDP) acquired, this martensite is a mixture of a very faulty orthorhombic ' martensite (see streaks along the basal 
plane in the upper EDP) and monoclinic ' martensite (lower EDP). In the case of sample C, a duplex microstructure 
consisting of precipitates of the stable  phase homogeneously distributed in a matrix was observed (Fig. 2b). The 
matrix is mainly a very faulty orthorhombic ' martensite (upper EDP), but regions in austenite state were also 
observed. According to the starting composition of alloy C, the material should be in austenite state [5]. A plausible 
explanation for that is that, as a consequence of the mass transport promoted by HPT, i.e. stable  phase 
precipitation, an Al depletion in the matrix has taken place. According to EDS analyses the precipitates have an Al 
content higher than the matrix. This reduction in the Al content of the matrix leads to an increase of the martensitic 
transformation temperatures and this would be the reason for the martensite occurrence at room temperature in this 
alloy.   

 With the aim of analyzing the martensitic transformation behavior preliminary DSC measurements were 
performed. Figure 3 shows the DSC curves corresponding to Cu–Al–Ni SMA C before and after HPT. As expected 
from the presence of the stable  phase, the amount of transforming material (enthalpy) is smaller for the sample 
after HPT than that for the sample before the severe plastic deformation. In addition, a clear shift of the martensitic 
transformation temperatures towards higher values together with a strong broadening is observed. This result 
indicates that even by applying an extremely heavy deformation the alloy functionality can be, at least, partly 
maintained. In other words, it is expected that ultra-fine grained Cu–Al–Ni SMAs with improve mechanical and 
functional properties can be produced by HPT. The reported results will open new opportunities to investigate the 
superelastic and shape memory effects in nanostructured Cu–Al–Ni alloys, which could be different from those 
reported for single crystal samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Bright field TEM images acquired from Cu–Al–Ni SMA B (a) and C (b) after HPT. 
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Fig. 3. DSC measurements performed on Cu–Al–Ni SMA C before (a) and after (b) HPT. 

4. Conclusions 

 High-pressure torsion was successfully applied for the first time in polycrystalline Cu–Al–Ni SMAs. 
 The phases present in severely deformed Cu–Al–Ni shape memory alloys were characterized. 
 At least to a significant extend, the martensitic transformation has been observed via DSC in one of the severely 

deformed sample (alloy C). 
 The reported results open new opportunities to investigate the superelastic and shape memory effects in 

nanostructured Cu–Al–Ni alloys, which could be different from those reported for single crystal samples. 
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