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The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order
to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated
from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we
observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to
the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely
wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain
the 2-4-nm-thin uniform Nd-rich layer.

Keywords grain boundaries, hard magnetic materials, phase
transitions, wetting

1. Introduction

The developments of last decade show that the properties of
fine-grained and nanograined materials are critically controlled
by the behavior of grain boundaries (GBs) and triple junctions
(TJs) (Ref 1, 2). Moreover, the most advanced experimental
methods like high-resolution electron microscopy (HREM) and
atom probe microscopy allowed observing that GBs and TJs
are frequently not atomically thin and smooth but contain the
few-nm-thick layers or so-called complexions (Ref 3–15).
These layers can appear in equilibrium, non-equilibrium

(transient), or steady-state structures (Ref 4–22). Most inter-
esting, from our point of view, is the phenomenon of the so-
called pseudopartial (or pseudo-incomplete) GB wetting
(marked as PPW in the generic phase diagram in Fig. 1g
proposed in Ref 23) (Ref 24–26). It is an intermediate between
complete (CW, Fig. 1g) and partial (PW, Fig. 1g) GB wetting.

Let us consider a partially melted two- or multicomponent
polycrystal. It corresponds to the condition that temperature is
between the solidus temperature TS and the liquidus temper-
ature TL. Consider the droplet of a liquid phase on the surface
of a solid phase or between two solid grains. Usually, one
distinguishes partial and complete wetting of surfaces or
interfaces. If the liquid droplet partially wets a solid surface
(Fig. 1a), then rsg�rsl = rlg cos h, where rsg is the free
energy of solid/gas interface, rsl is the free energy of solid/
liquid interface, rlg is that of liquid/gas interface, and h is the
contact angle. If the liquid droplet partially wets the boundary
between two solid grains (Fig. 1b), then rgb = 2rsl cos h,
where rgb is the free energy of a grain boundary (GB). The free
surface or GB which is not covered by the liquid droplets
remains dry and contains only the adsorbed atoms with
coverage below one monolayer. In this case, the GB can exist
in the equilibrium contact with the liquid phase. In the case of
complete wetting (Fig. 1c, d) rsg>rlg + rsl or rgb> 2rsl,
the contact angle is zero, and liquid spreads over the free
surface or between grains. In this case, the GB separating the
grains is completely substituted by the liquid phase.

The transition from incomplete to complete (partial) GB
wetting proceeds at a certain Tw if the energy of two solid-
liquid interfaces 2rSL becomes lower than the GB energy
rGB> 2rSL. Cahn (Ref 27) and Ebner and Saam (Ref 28) first
showed that the (reversible) transition from incomplete to
complete wetting can proceed with increasing temperature and
that it is a true surface phase transformation. The GB wetting
temperatures, Tw, depend both on GB energy and solid-liquid
interfacial energy which, in turn, depend on the crystallography
of these interfaces (Ref 29–32). The transition from incomplete
to complete GB wetting starts at a certain minimum temper-
ature Twmin which corresponds to the combination of maximum
rGB and minimum rSL. The transition from incomplete to
complete GB wetting finishes at a maximum temperature Twmax

which corresponds to the combination of minimum rGB and
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maximum rSL. The fraction of completely wetted GBs
increases from 0 to 100% as the temperature increases from
Twmin to Twmax. (Ref 33–39). As a result, the new tie lines
appear in the S + L area of a phase diagram at Twmin and Twmax

(Ref 33–39).
In the case of complete wetting (Fig. 1c, d) rsg>rlg + rsl

or rgb> 2rsl, the contact angle is zero, and liquid spreads over
the free surface or between grains. What happens, if the amount
of liquid is small and surface (or GB) area is large? In this case,
the liquid spreads until both solid grains or solid and gas begin
to interact with each other through the liquid layer. The liquid
forms a ‘‘pancake’’ with a thickness es of about 2-5 nm (Ref 8,
40):

es ¼ ðA=4pSÞ1=2; ðEq 1Þ

where S = rsg�rsl�rlg is the spreading coefficient on a
strictly ‘‘dry’’ solid and A is the Hamaker constant (Ref 40).
In case of complete wetting, A> 0 and S> 0 (Ref 40). Such
‘‘pancake’’ on the free surface or between the grains is
formed by the deficit of a wetting phase, i.e., in the a + L
two-phase area of a phase diagram, but very close to the soli-
dus line.

In the majority of cases, the direct transition occurs from
partial wetting into complete wetting, for example by increas-
ing temperature (Ref 32, 36, 41) or decreasing pressure (Ref
42). However, in some cases the state of pseudopartial wetting
occurs (PPW in Fig. 1g) between partial and complete wetting.
In this case, the contact angle h> 0, and the liquid droplet does
not spread over the substrate, but the thin (few nm) precursor
film exists around the droplet and separates substrate and gas
(Fig. 1e). Such precursor film is very similar for the liquid
‘‘pancake’’ which forms in case of complete wetting and deficit
of the liquid phase. This case is called pseudopartial wetting,
and it is possible when A< 0 and S> 0 (Ref 40). In case of
pseudopartial wetting, the precursor exists together with liquid
droplets, and in case of complete wetting the droplets disappear
forming the ‘‘pancake.’’

The sequence of discontinuous PWM PPW and continuous
PPWMCW has been observed for the first time in the alcanes/
water mixture (Ref 43). The critical end point (CEP in Fig. 1f)
was observed in a mixture of pentane and hexane which was
deposited on an aqueous solution of glucose (Ref 23). The first
direct measurement of the contact angle in the intermediate
wetting state (pseudopartial wetting) was performed in the
sequential-wetting scenario of hexane on salt brine (Ref 43).
Later, the formation of Pb, Bi, and binary Pb-Bi precursors
surrounding liquid or solidified droplets has been observed on

the surface of solid copper (Ref 44). The pseudopartial wetting
has been observed recently also for GBs (Fig. 1f) in Al-Zn (Ref
24, 25) and W-C-Co (Ref 26) systems. The 2-4-nm-thin layers
of the soft Zn-rich phase between Al grains lead to the
superductility of the ultrafine-grained Al-Zn alloys obtained by
the high-pressure torsion (Ref 20, 21, 45, 46). The analysis of
existing literature permitted us to suppose that the pseudopartial
GB wetting exists also in the Fe-Nd-B-based hard magnetic
alloys (Ref 47). The goal of this work is to experimentally
prove this hypothesis.

2. Experimental

The Nd-Fe-B-based liquid-phase sintered alloy was pur-
chased from the company Vacuumschmelze GmbH (Germany):
it contained 66.5 wt.% Fe, 22.1 wt.% Nd, 9.4 wt.% Dy, 1.0
wt.% Co, 0.8 wt.% B, and 0.2 wt.% Cu. The as-delivered
samples were cut into 29 49 6 mm specimens (for the
investigations of GB wetting behavior) and 39 39 3 mm
specimens (for magnetic measurements). The samples were
sealed into evacuated silica ampoules with a residual pressure
of approximately 49 10�4 Pa at room temperature. They were
annealed at 900 �C for 2 h and then quenched in water. The
accuracy of the annealing temperature was ±1 �C. Transmis-
sion electron microscopy (TEM, HRTEM, STEM, EDXS)
studies were carried out on the on the TECNAI instrument. X-
ray diffraction (XRD) data were obtained on a Siemens
diffractometer (Co Ka radiation). TEM lamellas were prepared
on the STRATA dual- beam facility. The magnetic properties
were measured on a superconducting quantum interference
device SQUID (Quantum Design MPMS-7 and MPMS-XL).

3. Results

In Fig. 3a, the STEM micrograph of a triple joint between is
shown. The chemical composition of these three grains measured
by the EDXS in TEM corresponds to that of Nd2Fe14B hard
magnetic phase. The triple joint shown in Fig. 3a is filled by the
Nd-rich phase which was liquid during the liquid-phase sintering
and annealing at 900 �C (Ref 48–50). Fig. 3d, e, and f shows the
Fe and Nd concentration profiles across all three Nd2Fe14B/
Nd2Fe14B GBs in the locations C, B, and A (Fig. 3a),
respectively. The first two profiles do not contain any Fe and/
or Nd maxima or minima. It means that the respective GBs C

Fig. 1 The schemes for the wetting of free surfaces and GBs. (a) partial surface wetting, L – liquid phase, S – solid phase, G – gas phase; (b)
partial GB wetting; (c) complete surface wetting; (d) complete GB wetting; (e) pseudopartial surface wetting; (f) pseudopartial GB wetting; (g)
generic wetting phase diagram [23], PW – partial wetting, CW – complete wetting, PPW – pseudopartial wetting, CEP – critical end point, thick
lines mark the discontinuous (first order) wetting transition, thin line mark the continuous (second order) wetting transition

3304—Volume 25(8) August 2016 Journal of Materials Engineering and Performance

Author's personal copy



and B remain ‘‘dry’’ and are not enriched (depleted) by the Fe
and/or Nd. The GBs C and B have the non-zero contact angle
with Nd-rich phase in the TJ. In other words, the GBs C and B
are incompletely (partially) wetted by the Nd-rich melt. This
situation corresponds to the scheme shown in Fig. 1b.

The GB A is different. The concentration profile in Fig. 3f
shows that the GB A is enriched by Nd and depleted by Fe. The
thickness of the Nd maximum and Fe minimum is about 5 nm.
The uniformly thin light-gray layer of an Nd-rich phase in GB
A is clearly visible also in Fig. 3a. Figure 3b shows the
conventional TEM micrograph of this GB, and Fig. 3c contains
the micrograph of the same GB with a thin layer of an Nd-rich
phase. Both TEM and HREM also witness that the Nd-rich GB
layer is uniformly thin and has a thickness of about 5 nm. The
GB A, similar to the GBs C and B, also has the non-zero
contact angle with Nd-rich phase in the TJ. Since GB A is not
‘‘dry’’ and contains the thin Nd-rich layer, this situation
corresponds to the scheme shown in Fig. 1f and 2c. In other
words, the GB C is pseudo-incompletely (or pseudopartially)
wetted by the Nd-rich melt.

4. Discussion

The NdFeB-based alloys were invented in 1980s. They
remain the best-known hard magnetic alloys with the highest
magnetic energy product HB (B being the flux density and H

being the field strength). In order to reach the optimum
magnetic properties, the Nd2Fe14B grains have to be isolated
from one another by the layers of a non-ferromagnetic phase. In
most cases, it is the Nd-rich phase. It forms during the liquid-
phase sintering as a liquid layer between Nd2Fe14B grains. It
has been demonstrated rather early (Ref 51) that the thickness
of these layers needed for effective magnetic isolation between
Nd2Fe14B grains is only few nanometers (Ref 52). If the total
amount of the Nd-rich phase is too high, it decreases the
saturation magnetization of an alloy as a whole. Therefore, the
amount of the Nd-rich phase has to be kept as low as possible,
namely at the level which is minimally needed for the effective
magnetic isolation between grains of the hard magnetic
Nd2Fe14B phase.

The most broadly used technology for the production of
NdFeB-based hard magnetic alloys is the liquid-phase sintering
of a rather coarse-grained (10-20 lm) Nd2Fe14B powders. The
liquid-phase sintering usually proceeds close to 1100 �C (Ref
53, 54). The contact angles between melt and the Nd2Fe14B/
Nd2Fe14B GBs were experimentally measured in the temper-
ature interval between 700 and 1100 �C (Ref 55). Even at the
highest studied temperature of 1100 �C, the portion of com-
pletely wetted Nd2Fe14B/Nd2Fe14B GBs was slightly above
80%. It quickly decreased with decreasing temperature, and at
700 �C GBs it was only around 10%. These results concern the
‘‘pure’’ three-component Nd-Fe-B alloys. The micrographs
published in the literature permitted us to estimate the amount
of completely wetted Nd2Fe14B/Nd2Fe14B GBs in the alloys

Fig. 2 Different configurations of liquid phase in the GB triple junction and thin quasi-liquid thin layers in the GB. (a) Pseudopartial GB wet-
ting, h > 60�. (b) Pseudopartial GB wetting, h = 60�. (c) Pseudopartial GB wetting, h < 60�. The contact points between liquid phase in TJ
and quasi-liquid layers in the GB are shown by arrows. (d) Complete GB wetting, h = 0�
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containing various alloying elements (like Dy, Pr, Al, Cu, Co,
etc.) in addition to Nd, Fe, and B. Very seldom, the data points
were above the line for three-component Nd-Fe-B alloys. If the
portion of completely wetted Nd2Fe14B/Nd2Fe14B GBs is so
low and the amount of wetting phase is high, what is the
mechanism for the formation of magnetically isolating Nd-rich
layers between Nd2Fe14B grains which are needed for high
performance of the NdFeB-based alloys for permanent mag-
nets? Can the pseudopartial GB wetting be the explanation?

If one observes the thin GB layers of a constant thickness (or
complexions), it is not easy to distinguish whether one has the
case of (1) prewetting/prewetting in the one-phase area of a
bulk phase diagram; (2) thin GB ‘‘pancake’’ due to the deficit
of wetting phase; or (3) pseudopartial wetting by a liquid or
solid phase. The big problem is that most frequently the bulk
liquid or solid phase can be found only in the GB TJ
‘‘pockets.’’ The pseudopartial wetting can be clearly identified
only if the contact angle h ‡ 60� and the solid/liquid interface

Fig. 3 (a) STEM micrograph of a triple joint between three Nd2Fe14B grains filled by the Nd-rich phase. The positions of concentration pro-
files are shown (A, B and C). (b) Conventional TEM micrograph of a GB A containing the uniformly thin layer of a Nd-rich phase. (c) HREM
micrograph of the same GB with a thin layer of a Nd-rich phase. (d, e, f) Fe and Nd concentration profiles in the locations C, B and A, respec-
tively
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is convex (Fig. 2a, b). If the contact angle h< 60� and the
solid/liquid interface is concave (Fig. 2c, d), the difference
becomes very fine. If the solid/liquid interface has a discon-
tinuity (two tangentials) between TJ pocket and GB layer
(Fig. 2c), the pseudopartial wetting takes place. If the solid/
liquid interface is continuous (one tangential) between TJ
pocket and GB layer (Fig. 2d), the complete wetting with the
deficit of wetting phase takes place.

Can the Nd2Fe14B/Nd2Fe14B GBs contain the few-nanome-
ter-thick Nd-rich layers like the prewetting GB layers in metals
(Ref 17–22, 42, 56–62) or oxides (Ref 5–16)? Already in early
1990s, such few-nm-thin Nd-rich GB layers were indeed
observed in the NdFeB-based alloys (Ref 63). Later, the Nd-
rich uniformly thick layers between Nd2Fe14B grains with
thickness below 5 nm were observed in various alloys in many
experimental works (Ref 63–76). What is the physical reason
for the formation of such uniformly thick GB layers of few
nanometer thickness? As we saw above, two possibilities exist
for the explanation of this phenomenon. First one is the
complete GB wetting by a liquid phase in case of a deficit of a
melt. In this case, the liquid pockets in the GB TJs could still
completely wet the TJs and form the continuous network along
TJs. The TJ pockets make then the impression that the amount
of a liquid phase is not as low. Nevertheless, the liquid phase
distributes in this case in such a way that the pockets in TJs
remain macroscopic (i.e., few lm in diameter), but in GBs the
melt is in a deficit and is able to cover the GBs only with a few-
nm-thin films. In this case, the liquid in the TG pocket should
undergo into a thin GB layer without any shape discontinuity
(like it is shown in the scheme in Fig. 2c). Such continuous
shape transition between TJ pocket and GB film has been
indeed observed in various experiments (Ref 53, 65, 66, 77–
80). In numerous papers, one can see in the published
micrographs simultaneously TJs with (solidified by cooling)
liquid inside and thin film in GBs (Ref 53, 63, 65–67, 76–81).

Second possible explanation for the existence of the
uniformly thin GB layers is the pseudopartial GB wetting (like
it is shown in the scheme in Fig. 2a, b, c). In this case, there
should be a shape discontinuity (break of the first shape
derivative) in the contact point between liquid TJ pocket and
thin GB layer. It is easy to judge about pseudopartial GB
wetting if the contact angle is equal or above 60� (like in
Fig. 2a and b). If the contact angle is small (like it is shown in
Fig. 2c), the transition between liquid in TJ and (quasi)liquid in
GB is rather smooth, and the discontinuity is weak and not easy
to distinguish from the case of complete wetting and deficit of a
melt (Fig. 2d) like in Fig. 7b from the Ref 53. On the other
hand, in many papers the TEM micrographs were published
where the pseudopartial GB wetting most probably takes place
(Ref 63, 66, 67, 73, 76, 78, 79, 81). In any case, in order to
conclude about the nature of thin GB layers one needs the
micrographs where both TJ pockets and GB layers are visible.
Unfortunately, in the majority of cases the published micro-
graphs of thin Nd-rich GB layers do not contain the places
where the GB contacts with an Nd-rich pocket in a TJ. In such
cases, it is not easy or even not possible to judge, whether we
deal with complete GB wetting with deficit of wetting phase or
pseudopartial GB wetting.

The results obtained in our work show without any doubt that
the NdFeB-based alloys, together with few completely wetted
GBs, can contain GBs either incompletely or pseudo-incom-
pletely wetted by the Nd-rich melt. In first case (GBs A and B in
Fig. 3a), the GBs remain ‘‘dry’’ and are not enriched (depleted)

by the Fe and/or Nd (Fig. 3d and e). The GBs A and B also have
the non-zero contact angle with Nd-rich phase in the TJ.
Therefore, the GBs A and B are incompletely wetted by the Nd-
rich melt. This situation corresponds to the scheme shown in
Fig. 1b. The pseudo-incompletely (or pseudopartially) wetted
GB C also has the non-zero contact angle with Nd-rich phase in
the TJ (similar to the GBSA and B). However, the GBC contains
the thin layer which is enriched by Nd and depleted by Fe
(Fig. 3f). This layer is uniformly thin (about 5 nm) and also
clearly visible in TEM and HREM micrographs (Fig. 3b and c).
Since GB C is not ‘‘dry’’ and contains the thin Nd-rich layer, this
situation corresponds to the scheme shown in Fig. 1f and 2c. In
other words, the GB C is pseudo-incompletely (or pseudopar-
tially) wetted by the Nd-rich melt.

The completely, incompletely, and pseudopartially wetted
Nd2Fe14B/Nd2Fe14B GBs as well their TJs (filled by the Nd-rich
melt) form the continuous network with a complicated topology.
The contiguity of this network defined the ability of Nd2Fe14B/
Nd2Fe14BGBs to fix themagnetic domainwalls and to prevent its
movement. Such magnetic isolation increases the magnetic
energy product HB of NdFeB-based hard magnetic alloys.

5. Conclusions

In this work, we observed for the first time that the
boundaries between grains of Nd2Fe14B hard magnetic phase in
the NdFeB-based permanent magnets can be pseudo-incom-
pletely (or pseudopartially) wetted by the Nd-rich melt. Such
GBs form the non-zero contact angle with the melt in the TJs
and, simultaneously, contain the uniformly thin (about 5 nm)
Nd-rich layer. Therefore, they are different from the completely
wetted GBs (zero contact angle and non-uniform and thick Nd-
rich layer with thickness above 100 nm) and incompletely
wetted GBs (non-zero contact angle, no Nd-rich layer). The
thin Nd-rich layers in the pseudo-incompletely (pseudopar-
tially) wetted Nd2Fe14B/Nd2Fe14B GBs are most probably
responsible for the excellent magnetic properties of the NdFeB-
based permanent magnets. It is because these layers can ensure
the magnetic isolation between the Nd2Fe14B grains needed for
the high coercivity.
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