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Abstract: Four titanium-iron binary alloys were studied. They were preliminarily annealed in the
(α + β) and (α + TiFe) regions of the Ti-Fe phase diagram. The changes in the phase composition,
nanohardness, and Young’s modulus of the annealed alloys before and after high pressure torsion
(HPT) were investigated. Alloys with high iron content after HPT contain a large fraction of theω
phase. The nanohardness of the material in the middle of the radius of the HPT samples varies in
the same range of values between 4.4 and 5.8 GPa, regardless of the preliminary annealing. Young’s
modulus is a parameter sensitive to structural and phase changes in the material. After HPT, it
increases by a factor of 1.5 after preliminary annealing in the (α + β) region in comparison with that
in (α + TiFe) region.
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1. Introduction

Titanium alloys are quite attractive for various applications because of their high
specific strength, good corrosion resistance and high biocompatibility [1]. Therefore, the
interest in titanium and its alloys increases over the years [2–6]. The alloying, as well as
various thermal and mechanical treatments of titanium alloys permit the targeted control
of their structure and properties. Unlike many of the broadly used alloys (like Cu-, Al-,
Mo-, W- or Ta-based ones etc.), titanium has different allotropic modifications at different
temperatures and pressures. From this point of view, it is similar to iron. Therefore, it
gives the opportunity to develop various thermal and mechanical treatments technologies
for the titanium-based alloys. In particular, titanium has also a high pressure ω-phase
(together with low-temperature α and high-temperature β phases). Theω-phase can be
observed after pressure release. It is present as metastable one at ambient temperature and
disappears only after a heating up to several hundred degrees centigrade [2,3,7–12]. In
some Ti-alloys the metastableω-phase appears even after a certain heat treatment, without
application of high pressure [13–16].

The important input to the development of new ways to improving the properties
of Ti-based alloys can be done using severe plastic deformation (SPD) [2–4,17–21]. In
combination with conventional heat treatment, SPD expands the capabilities of titanium
alloys and their application area [17]. In particular, SPD can initiate the various phase
transitions [22] and always leads to strong grain refinement [23]. Among the SPD-driven
phase transformations are decomposition [24–28] of the formation of the supersaturated

Metals 2021, 11, 1657. https://doi.org/10.3390/met11101657 https://www.mdpi.com/journal/metals

https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://doi.org/10.3390/met11101657
https://doi.org/10.3390/met11101657
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/met11101657
https://www.mdpi.com/journal/metals
http://www.mdpi.com/2075-4701/11/10/1657?type=check_update&version=3


Metals 2021, 11, 1657 2 of 12

solid solution [29–31], nanocrystallization [32–34], dissolution of particles of a second solid
phase [35–40], amorphization [41–46], etc. The SPD (together with proper heat treatment)
allows controlling phase transformations and, therefore, tailoring the properties of a
material [17,47–50]. It is known that the phase composition, microstructure and mechanical
properties of alloys after severe plastic deformation are affected by the applied pressure [18],
the temperature during deformation [19], impurities [3,20], strain value [3,21,26], strain
rate [51], as well as the orientation of the grains in the starting material [21].

In many cases, various SPD-driven phase transformations proceed simultaneously
and, therefore, can compete with each other [27,50]. Several SPD-driven phase transitions
in the literature include mass-transfer and are, therefore, diffusive [23–51]. However,
the SPD can induce also displacive (or martensitic) phase transitions [50–56]. Using
the microstructure peculiarities of Ti-alloys induced by SPD, one can reach the excellent
mechanical properties [48,55,57] like the extraordinarily combination of high ductility and
strength [58,59]. Thus, SPD allows for the improving of the structure and properties of
Ti-based alloys. Therefore, the purpose of this work is to study the binary titanium-iron
alloys with different compositions annealed just below and above the temperature of
eutectoid transformation and subsequently subjected to the high pressure torsion (HPT),
and to analyze the resulting changes of nanohardness and Young’s modulus of these alloys.

2. Materials and Methods

Four binary titanium-iron alloys with 1.98 ± 0.12 wt.% Fe, 2.04 ± 0.07 wt.% Fe,
2.36 ± 0.03 wt.% Fe and 3.93 ± 0.21 wt.% Fe were studied. The alloys were manufactured
of pure titanium (99.98%, TI-1 grade) and iron (99.97%) by the levitation method in an
atmosphere of pure argon. In this method the molten metal levitates in a so-called cold
crucible, consisting of a circular set of vertically standing, water-cooled copper tubes.
Around the cold crucible is a water-cooled copper induction coil, which excites a powerful
magnetic field with a supersonic frequency in the cold crucible. Foucault eddy currents are
induced in the molten metal, which cause intense heating of the metal, up to its melting
point. At the same time, eddy currents create a counter magnetic field around the melt,
which interacts with the primary field and generates Lorentz forces, which allow a liquid
metal bath to float in a vacuum or inert atmosphere without touching the walls of a
cold crucible.

The discs with a thickness of 0.7 mm and diameter of 10 mm were cut from the obtained
cylindrical ingots. Then each sample was sealed in a quartz ampoule and annealed in
vacuum at a residual pressure of 4 × 10−4 Pa. After annealing, the samples were quenched
in water together with an ampoule. Annealings were carried out in two regions of the
titanium-iron phase diagram (above and below the eutectoid transformation), namely in
α + β area at 615 ◦C (144 and 270 h) and in α + TiFe area at 470 ◦C (463 and 750 h). HPT was
performed using a custom built computer-controlled device manufactured by W. Klement
GmbH, Lang, Austria. The obtained samples were subjected to HPT at room temperature
at 7 GPa, deformation rate of 1 rpm and 5 revolutions of the plunger. After the HPT, the
thickness of the samples was 0.35 mm.

Measurements of the nanohardness were carried out on the TI-950 Hysitron Triboin-
denter device equipped with a Berkovich indenter (Brucker, Madison, WI, USA). The mea-
surements were carried out in the center (R0), in the middle of the radius (R1/2) and near
the edge (R1) of the samples, the loading rate was constant and equal to dP/dt = 40 mN/s.
The maximal load was Pmax = 200 mN. Before the measurements, the surface of the samples
was polished on a diamond paste with a grain size of 1 microns. The numerical values of
the nanohardness (H) and Young’s modulus (E) of the studied samples were determined
using the Oliver-Farr method based on characteristic P-h diagrams [60–62]. Nanohardness
measurements were carried out at room temperature and a constant value of the maximum
load applied to the Pmax indenter (Pmax = 200 mN), the studied values of H and E were
obtained by averaging the results obtained from 12 independent experiments.
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For the structural-phase analysis of the samples, the X-ray (XRD) patterns were mea-
sured using a Siemens D-500 X-ray diffractometer (Berlin, Germany) in Cu-K1 radiation.
The phase analysis and calculation of the lattice parameters were carried out using the Pow-
derCell for Windows Version 2.4.08.03.2000 program (Werner Kraus & Gert Nolze, BAM,
Berlin, Germany). To determine the chemical composition of the samples, a high-resolution
scanning electron microscope (SEM) Supra 50VP (Carl Zeiss, Oberkochen, Germany) with
the INCA Energy + microanalysis system was used, equipped with an Oxford Instruments
(Abingdon, UK) energy dispersion microanalysis prefix. Transmission electron microscopy
(TEM) and high resolution TEM (HRTEM) observations have been made by using an aber-
ration corrected TITAN 80–300 transmission electron microscope (FEI, Hillsboro, OR, USA).
The cross section TEM and HRTEM specimens were cut from HPT discs at a 3 mm distance
from the disc center. They were further thinned in a FEI Strata 400S dual beam facility (FEI,
Hillsboro, OR, USA).

3. Results

Figure 1 shows XRD patterns for the Ti–2.36 wt.% Fe (Figure 1a), Ti–3.93 wt.% Fe
(Figure 1b), Ti–1.98 wt.% Fe (Figure 1c) and Ti–2.04 wt.% Fe (Figure 1d) alloys annealed at
470 ◦C (Figure 1a,b) and 615 ◦C (Figure 1c,d). The bottom curves (red) are for the annealed
samples before HPT, the top curves (black) are for the annealed samples after HPT. The
peaks in XRD patterns before HPT are narrow. It is due to the high crystallinity of the
samples and large grain size in the samples after annealing. The peaks in XRD patterns
after HPT are broad due to the grain refinement driven by HPT. The samples annealed at
470 ◦C (Figure 1a,b, red curves), i.e., below the temperature of eutectoid decomposition
of β-phase contain the mixture of α-phase and intermetallic compound TiFe. After HPT
(Figure 1a,b, black curves) the ω-phase appears in addition to the α-phase and TiFe.
The samples annealed at 615 ◦C (Figure 1c,d, red curves), i.e., above the temperature of
eutectoid decomposition of β-phase contain the mixture of α-phase and β-phases. After
HPT (Figure 1c,d, black curves) theω-phase appears, and the α-phase almost disappears.

In Figure 1 some peaks are marked as α/β/ω. After exposure to HPT, the peaks in
the XRD patterns become wide and “blurred”. As a result, one, two or even three closely
lying XRD peaks corresponding to different phases can fall under such a “blurred” peak.
The phase analysis and calculation of the lattice parameters were carried out using the
PowderCell for Windows Version 2.4.08.03.2000 program (Werner Kraus & Gert Nolze,
BAM Berlin, Germany). The program distinguishes all phases and closely lying lines of
different phases. The scale of the drawings does not allow us to make more inscriptions
and preserve the readability of the text, therefore we used such a system for describing
the peaks.
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Figure 1. XRD patterns for the Ti–2.36 wt.% Fe (a), Ti–3.93 wt.% Fe (b), Ti–1.98 wt.% Fe (c) and Ti–2.04 wt.% Fe; and (d) 
alloys annealed at 470 °C (a,b) and 615 °C (c,d). The bottom curves (red) are for the annealed samples before HPT, the top 
curves (black) are for the annealed samples after HPT. 

The results of XRD studies of samples before and after HPT are given in Table 1. In 
all annealed samples, the main phase is α. The average grain size in α and β phases varies 
from 125 to 144 nm. It has been was calculated from X-ray structural data using the shape 
of XRD peaks. After HPT the average grain size is 34  38 nm in α-phase, 32  47 nm in β-
phase and 18  25 nm in ω-phase. Data on the grain size in different phases before HPT 
(average 133.6 ± 2.8 nm) and after HPT (average 32.4 ± 2.9 nm) is shown in Figure 2. The 
main phase after HPT becomes the ω-phase and its fraction increases with increasing iron 
concentration in the alloy (Table 2). The lattice parameters after annealing and after HPT 
for the α-phase almost do not change. It can be seen from the tables that the fraction of the 
β-phase after the HPT decreases, the lattice parameters increase by 0.004 nm, i.e., in the β 
phase after the HPT, the concentration of iron increases. 

Table 1. Lattice parameters, phases and their volume fraction in alloys after heat treatment. 

Iron Content, 
wt.% Fe 

Phase Dia-
gram Area 

αTi βTi TiFe 

V, % а, с, nm V, % а, nm V, % с, а, nm 

1.98 ± 0.12 α + β 95 0.2950, 0.4686 5 0.3216 - - 
2.04 ± 0.07 α + β 85 0.2948, 0.4682 15 0.3226 - - 
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Figure 1. XRD patterns for the Ti–2.36 wt.% Fe (a), Ti–3.93 wt.% Fe (b), Ti–1.98 wt.% Fe (c) and Ti–2.04 wt.% Fe; and
(d) alloys annealed at 470 ◦C (a,b) and 615 ◦C (c,d). The bottom curves (red) are for the annealed samples before HPT, the
top curves (black) are for the annealed samples after HPT.

The results of XRD studies of samples before and after HPT are given in Table 1. In all
annealed samples, the main phase is α. The average grain size in α and β phases varies
from 125 to 144 nm. It has been was calculated from X-ray structural data using the shape
of XRD peaks. After HPT the average grain size is 34 ÷ 38 nm in α-phase, 32 ÷ 47 nm in
β-phase and 18 ÷ 25 nm in ω-phase. Data on the grain size in different phases before HPT
(average 133.6 ± 2.8 nm) and after HPT (average 32.4 ± 2.9 nm) is shown in Figure 2. The
main phase after HPT becomes theω-phase and its fraction increases with increasing iron
concentration in the alloy (Table 2). The lattice parameters after annealing and after HPT
for the α-phase almost do not change. It can be seen from the tables that the fraction of the
β-phase after the HPT decreases, the lattice parameters increase by 0.004 nm, i.e., in the β
phase after the HPT, the concentration of iron increases.

Table 1. Lattice parameters, phases and their volume fraction in alloys after heat treatment.

Iron Content,
wt.% Fe

Phase Diagram
Area

αTi βTi TiFe

V, % a, c, nm V, % a, nm V, % c, a, nm

1.98 ± 0.12 α + β 95 0.2950, 0.4686 5 0.3216 - -
2.04 ± 0.07 α + β 85 0.2948, 0.4682 15 0.3226 - -
2.36 ± 0.03 α + TiFe 97 0.2950, 0.4687 - - 3 0.2978
3.93 ± 0.21 α + TiFe 92 0.2950, 0.4688 - - 8 0.2976

Ti [63] - - 0.2955, 0.4694 -

Table 2. Lattice parameters, phases and their volume fraction in alloys after heat treatment and HPT.

Iron Content,
wt.% Fe

Phase Diagram
Area

αTi βTi ωTi TiFe

V, % a, c, nm V, % a, nm V, % c, a, nm V, % a, nm

1.98 ± 0.12 α + β 10 0.2952, 0.4693 11 0.3256 79 0.4626, 0.2814 - -
2.04 ± 0.07 α + β 12 0.2950, 0.4684 1 0.3252 87 0.4630, 0.2812 - -
2.36 ± 0.03 α + TiFe 8 0.2950, 0.4690 16 0.3255 76 0.4626, 0.2814 - -
3.93 ± 0.21 α + TiFe 7.5 0.2950, 0.4688 - - 92 0.4627, 0.2812 0.5 0.2980

Ti [63] – - 0.2959, 0.4690 - - - - - -

Figure 3 shows the TEM micrographs of the Ti–3.93 wt.% Fe alloy annealed at
T = 615 ◦C, 270 h, quenched and subjected to HPT at 7 GPa, 1 rpm, 5 rot. The bright
field image is shown in the left-hand side of the figure, the dark field image is on the
right. The grain size is about 50 nm and corresponds with the XRD data. The selected
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area electron diffraction (SAED) pattern is shown as inset. It contains the rings of α- and
ω-phases.
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Figure 3. TEM micrographs of the Ti–3.93 wt.% Fe alloy annealed at T = 615 ◦C, 270 h, quenched and
subjected to HPT at 7 GPa, 1 rpm, 5 rot. On the left is a bright field image; on the right is a dark field
image of the same area. The selected area electron diffraction (SAED) pattern is shown as inset.

In Figure 4 the dependences are shown between load P applied to the Berkovich
indenter and the indentation depth h for the alloys (1) Ti–1.98 wt.% Fe annealed at
470 ◦C, (2) Ti–2.04 wt.% Fe annealed at 470 ◦C, (3) Ti–2.36 wt.% Fe annealed at 615 ◦C,
(4) Ti–3.93 wt.% Fe annealed at 615 ◦C. After preliminary annealing, the samples were
subjected to HPT (7 GPa, 1 rpm, 5 rot). The P(h) dependences were measured: (a) in the
sample center R0; (b) in the middle of the radius R1/2; and (c) at the sample edge R1. The
slope of these curves is proportional to the Young’s modulus E. It is important that the
slope of P(h) curves is very different for different studied samples.

Consider now the dependences of the nanohardness H (Figure 5a,c) and Young’s
modulus E (Figure 5b,d) on the location of the measurements, namely the center, the
middle of the radius and the edge of the samples. In the first case (Figure 5a,b), when the
annealing temperature and duration are the same for two alloys, and the iron concentration
differs by 1.57 wt.% (~60%), as a result, H is higher by 1.3 GPa (~23%), and E is higher by
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46 GPa (~43%) for the Ti–3.93 wt.% Fe alloy in comparison with that with 1.57 wt,% Fe.
These values are measured in the middle of the radius of the samples. The differences in
the H and E values in the center and at the edges of the samples are higher. In the second
case (Figure 5b,d), when the temperature and concentration of iron is the same for the two
alloys, and the difference in the annealing duration is 126 h (~47%), H is higher by 1.3 GPa
(~23%), and E changes by 8 GPa (~5%) for the Ti–1.98 wt.% Fe alloy as a result.
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4. Discussion

As mentioned above, titanium possesses the high-pressure ω-phase. The ω-phase
can be observed after pressure release in HPT. It is present as a metastable one at ambi-
ent temperature and disappears only after heating up to several hundred degrees centi-
grade [2,3,7–12]. In some Ti-alloys the metastable ω-phase appears even after a certain
heat treatment, without the application of high pressure [13–16]. The α-Ti phase possesses
the space group P63/mmc. α-Ti has two atoms per unit cell at (1/3,2/3,1/2) and (2/3,1/3,
3/2) and a c/a ratio of ~1.58. The ω-Ti possesses the space group P6/mmm. It has three
atoms per unit cell at (0,0,0), (1/3,2/3,1/2), and (2/3,1/3,1/2) and a c/a ratio of ~0.61. Thus,
the symmetry of the ω-Ti is high, 24 point-group operations, the same as for the simple
hexagonal structure. The specific electronic structure facilitates the formation of ω-Ti.
Titanium has the occupied narrow d-band and the broad sp-bands. Under the applied
pressure, the sp-bands rise in energy and cause the electrons to be transferred into the
d-band [64]. This process is known as s-d transition and governs the structural properties of
the transition metals. The elements stabilizing the β-phase in titanium are mostly transition
ones (e.g., Nb, Cr, Zr, Fe, Ni, Cu, Co). They are rich on d-electrons. Thus, the alloying
of titanium by the β-stabilizers increases the d-electron concentration. Such alloying can,
therefore, provide an additional driving force for the αTi to toωTi transformation. For the
α→ ω phase transformation, one can consider the alloying of Ti with β-phase stabilizers
as an equivalent of pressure. Hennig [65] concluded from ab initio calculations that the
alloying with β-stabilizing elements such as V, Mo, Fe or Ta should lead to a decrease in the
onset pressure of the α→ ω transformation. The combined effect of β-stabilizer alloying
and pressure application (2–12 GPa) was experimentally studied using Zr–Nb, Ti–Nb and
Ti–V alloys only in few works [66–68]. With increasing concentration of β-stabilizer, the
formation pressure ofω-Ti first decreases. Above a certain concentration of a β-stabilizer
the formation pressure ofω-Ti rapidly grows.

As a rule, studies conducted on materials after SPD are accompanied by a study
of the microstructure, phase composition of samples and measurement of mechanical
properties, such as nano- or microhardness [24,25,27,65,66] and elastic modulus [6,69].
One has to underline here the difference between nano and microhardness. When one
refers to the “hardness” of a material, one means the property of the material to resist the
penetration of a harder material, i.e., the indenter. It is necessary to clearly distinguish
between the microhardness and nanohardness of the material. The “nano” prefix reflects
the ability of the instruments to measure the displacement of the indenter with a nanometer
resolution and operate in the load range from tens to hundreds of nanonewtons to about
10 N. Nanoindentation is realized during tests when the indenter penetration depth h
is below 200 nm, microindentation is performed by an indentation force P up to 2 N at
h > 0.2 µm, and macroindentation is performed by a force P from 2 N to 30 kN. The value of
nanohardness can differ significantly from the microhardness for the same material [70–72].
In our work, the nanohardness of the material was measured at Pmax = 200 mN.

The measured dependences of microhardness along the sample diameter usually
have a minimum in the center [3]. Such a minimum in the middle of the sample usually
disappears with an increase in the number of revolutions (i.e., with increasing strain).
The authors [3] showed that with an increase in the iron concentration from 0 to 1 wt.%,
the microhardness of the material increases, and after HPT at 6 GPa it changes in the
range from 3.5 to 4.0 GPa, where the main phase in the sample is the ω phase and a
little α phase is present. It was shown by Sinha et al. that the hardness of pure titanium
increases after HPT with the number of revolutions from the center to the edge in [21].
The authors of reference [21] also concluded that the hardness depends not only on the
volume fraction of the α, β orω phase, but also on the size and distribution of the phases.
Edalati et al. showed that carrying out HPT at low temperatures leads to a decrease in
the grain size, as well as to a change in the phase ratio [19]. It is shown that the difference
of HPT temperature of 200K gives a decrease in the grain size of about a factor of five,
and reduces the fraction of theω phase. In references [62,73], the authors made detailed
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measurements of the micro- and nanohardness of large β and α grains in the annealed
polycrystal, and showed that the microhardness of β grains in pure titanium increases
with increasing annealing duration (from ~1.9 to 2.5 GPa), and microhardness of α-phase
decreases from ~2 to 1.8 GPa). Kao [19] suggested that grain boundaries are the main
structural component responsible for the strengthening of a material. Chong [73] was able
to measure the nanohardness of individual α (3.9 GPa) and β (un-transformed 5.9 GPa and
transformed 4.6 GPa) grains in the Ti-1.0 wt.%Fe alloy.

The studied alloys were annealed in two different regions of the phase diagram,
namely (α + β) and (α + TiFe). At the studied iron concentrations, the alloys have similar
composition and grain size of α, β and TiFe phases. Moreover, after HPT they also have
similar values of the phase composition and grain size of for different phases. The spread
in nanohardness values after HPT is between 4.4 to 5.8 GPa and is the same for both
pre-annealing temperatures. The microhardness of pure titanium (99.4 wt.%) increases
from 260 to 400 HV with an increase in the applied HPT pressure [18]. The increase in the
number of revolutions also leads to the microhardness increase from 200 to 320 HV [2].
This is the standard spread in the Vickers microhardness for titanium and titanium alloys
with a small fraction of the second component [2,3,20,61–63]. The nanohardness values
in titanium samples after HPT are from 4 to 6 GPa [69,73,74]. It is about 66% higher than
microhardness ones. Thus, our data on nanohardness (Figure 5) do not contradict the
published data of other authors. Our alloys with the highest and lowest iron content
showed similar hardness values. We can see (Figure 5) that preliminary heat treatment has
a significant effect on the mechanical properties of the samples after HPT. The presence of
even very small amounts of the intermetallic phase TiFe increases the nanohardness for the
samples previously annealed in the (α + TiFe) region. The combination of three phases α,
β andω in the alloy also increases the nanohardness of the material. As can be seen from
Figure 5a,b, the multiphase alloy pre-annealed in the temperature region (α + TiFe) has a
higher nanohardness value, despite the fact that it contains less iron. The presence of small
precipitates of various phases strengthens the material. The values of Young’s moduli in
this case turned out to be almost equal over the entire radius of the samples.

The literature data on the modulus of elasticity for titanium alloys are more scarce
than those for hardness, and their scatter is rather large [69,75–77]. From the results of
the experiment shown in Figure 5a,c, it can be seen that two main factors affecting the
nanohardness of alloys are the concentration of iron and the phase composition or their
combination. A large concentration of iron in the alloy leads to the fact that after HPT the
small amounts of the intermetallic compound TiFe remain. These TiFe precipitates, we
assume, strengthen the material stronger than a large number of phases in the material.
But in this case, the values of Young’s modulus fall by almost 1.5–2 times.

If it is required to strengthen the material after exposure to HPT, then it is necessary to
select the composition of the material and the area of the phase diagram for preliminary
heat treatment. If high values of Young’s modulus are required, then pre-annealing in the
two-phase region and multiplicity of phases after HPT will raise its values. Two factors
have a decisive influence on the micro/nanohardness of the material, namely the presence
of intermetallic phase and the precipitates at the grain boundaries.

5. Conclusions

High pressure torsion (HPT) unduces to the phase transitions in the Ti-based alloys.
In particular, HPT leads to the formation of a high-pressure ω-Ti phase which remains
metastable after pressure release. Phase composition of the samples depends on the
phasestemperature of preliminary annealing (above or below the temperature of eutectoid
transformation). In turn, the component and phase composition after HPT control the
nanohardness H and Young’s modulus E. in such a way that H and E also depend on
the region of the phase diagram in which the preliminary heat treatment is carried out.
Preliminary heat treatment in (α + β) region gives high values of Youngs modulus E.
The increase of the nanohardness H of the material requires either the presence of an



Metals 2021, 11, 1657 9 of 12

intermetallic phase, which can be obtained after annealing in the (α + TiFe) region, or a
larger number of different phases.
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28. Straumal, B.; Valiev, R.; Kogtenkova, O.; Zięba, P.; Czeppe, T.; Bielanska, E.; Faryna, M. Thermal evolution and grain boundary
phase transformations in severe deformed nanograined Al–Zn alloys. Acta Mater. 2008, 56, 6123–6131. [CrossRef]

29. Lojkowski, W.; Djahanbakhsh, M.; Burkle, G.; Gierlotka, S.; Zielinski, W.; Fecht, H.J. Nanostructure formation on the surface of
railway tracks. Mater. Sci. Eng. A 2001, 303, 197–208. [CrossRef]

30. Gavriljuk, V.G. Decomposition of cementite in pearlitic steel due to plastic deformation. Mater. Sci. Eng. A 2003, 345, 81–89.
[CrossRef]

31. Sauvage, X.; Wetscher, F.; Pareige, P. Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu–Fe
composite. Acta Mater. 2005, 53, 2127–2135. [CrossRef]

32. Glezer, A.M.; Plotnikova, M.R.; Shalimova, A.V.; Dobatkin, S.V. Severe plastic deformation of amorphous alloys: I. Structure and
mechanical properties. Bull. Russ. Acad. Sci. Phys. 2009, 73, 1233–1236. [CrossRef]

33. Abrosimova, G.E.; Aronin, A.S.; Dobatkin, S.V.; Kaloshkin, S.D.; Matveev, D.V.; Rybchenko, O.G.; Tatyanin, E.V.; Zverkova, I.I.
The formation of nanocrystalline structure in amorphous Fe-Si-B alloy by severe plastic deformation. J. Metastab. Nanocryst.
Mater. 2005, 24, 69–72. [CrossRef]

34. Henits, P.; Révész, Á.; Zhilyaev, A.P.; Kovács, Z. Severe plastic deformation induced nanocrystallization of melt-spun
Al85Y8Ni5Co2 amorphous alloy. J. Alloys Comp. 2008, 461, 195–199. [CrossRef]

35. Cepeda-Jiménez, C.M.; García-Infanta, J.M.; Zhilyaev, A.P.; Ruano, O.A.; Carreño, F. Influence of the thermal treatment on the
deformation-induced precipitation of a hypoeutectic Al–7 wt% Si casting alloy deformed by high-pressure torsion. J. Alloys Comp.
2011, 509, 636–643. [CrossRef]

36. Ivanisenko, Y.; Lojkowski, W.; Valiev, R.Z.; Fecht, H.J. The mechanism of formation of nanostructure and dissolution of cementite
in a pearlitic steel during high pressure torsion. Acta Mater. 2003, 51, 5555–5570. [CrossRef]

37. Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Dobatkin, S.V.; Rodin, A.O.; Baretzky, B.; Goll, D.; Schütz, G. Fe–C nanograined
alloys obtained by high pressure torsion: Structure and magnetic properties. Mater. Sci. Eng. A 2009, 503, 185–189. [CrossRef]

38. Sagaradze, V.V.; Shabashov, V.A. Deformation-induced anomalous phase transformations in nanocrystalline FCC Fe–Ni based
alloys. Nanostruct. Mater. 1997, 9, 681–684. [CrossRef]

39. Ohsaki, S.; Kato, S.; Tsuji, N.; Ohkubo, T.; Hono, K. Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by
accumulative roll-bonding process. Acta Mater. 2007, 55, 2885–2895. [CrossRef]

40. Straumal, B.B.; Dobatkin, S.V.; Rodin, A.O.; Protasova, S.G.; Mazilkin, A.A.; Goll, D.; Baretzky, B. Structure and properties of
nanograined Fe–C alloys after severe plastic deformation. Adv. Eng. Mater. 2011, 13, 463–469. [CrossRef]

41. Sergueeva, A.V.; Song, C.; Valiev, R.Z.; Mukherjee, A.K. Structure and properties of amorphous and nanocrystalline NiTi prepared
by severe plastic deformation and annealing. Mater. Sci. Eng. A 2003, 339, 159–165. [CrossRef]

42. Prokoshkin, S.D.; Khmelevskaya, I.Y.; Dobatkin, S.V.; Trubitsyna, I.B.; Tatyanin, E.V.; Stolyarov, V.V.; Prokofiev, E.A. Alloy
composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti-Ni based shape
memory alloys. Acta Mater. 2005, 53, 2703–2714. [CrossRef]

43. Sauvage, X.; Renaud, L.; Deconihout, B.; Blavette, D.; Ping, D.H.; Hono, K. Solid state amorphization in cold drawn Cu/Nb wires.
Acta Mater. 2001, 49, 389–394. [CrossRef]

44. Miyazaki, T.; Terada, D.; Miyajima, Y.; Suryanarayana, C.; Murao, R.; Yokoyama, Y.; Sugiyama, K.; Umemoto, M.; Todaka, T.;
Tsuji, N. Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion. J. Mater. Sci.
2011, 46, 4296–4301. [CrossRef]

http://doi.org/10.1016/j.actamat.2014.01.037
http://doi.org/10.1007/s10853-014-8248-6
http://doi.org/10.1016/j.msea.2020.140687
http://doi.org/10.1016/j.acme.2013.07.002
http://doi.org/10.1016/S0079-6425(99)00007-9
http://doi.org/10.1016/j.actamat.2004.06.006
http://doi.org/10.1016/j.actamat.2006.04.025
http://doi.org/10.1007/s10853-011-5805-0
http://doi.org/10.1016/j.matlet.2013.12.042
http://doi.org/10.1016/j.actamat.2008.08.021
http://doi.org/10.1016/S0921-5093(00)01947-X
http://doi.org/10.1016/S0921-5093(02)00358-1
http://doi.org/10.1016/j.actamat.2005.01.024
http://doi.org/10.3103/S1062873809090123
http://doi.org/10.4028/www.scientific.net/JMNM.24-25.69
http://doi.org/10.1016/j.jallcom.2007.07.049
http://doi.org/10.1016/j.jallcom.2010.09.122
http://doi.org/10.1016/S1359-6454(03)00419-1
http://doi.org/10.1016/j.msea.2008.03.052
http://doi.org/10.1016/S0965-9773(97)00150-5
http://doi.org/10.1016/j.actamat.2006.12.027
http://doi.org/10.1002/adem.201000312
http://doi.org/10.1016/S0921-5093(02)00122-3
http://doi.org/10.1016/j.actamat.2005.02.032
http://doi.org/10.1016/S1359-6454(00)00338-4
http://doi.org/10.1007/s10853-010-5240-7


Metals 2021, 11, 1657 11 of 12

45. Mazilkin, A.A.; Abrosimova, G.E.; Protasova, S.G.; Straumal, B.B.; Schütz, G.; Dobatkin, S.V.; Bakai, A.S. Transmission electron
microscopy investigation of boundaries between amorphous “grains” in Ni50Nb20Y30 alloy. J. Mater. Sci. 2011, 46, 4336–4342.
[CrossRef]

46. Straumal, B.B.; Mazilkin, A.A.; Protasova, S.G.; Goll, D.; Baretzky, B.; Bakai, A.S.; Dobatkin, S.V. Formation of two amorphous
phases in the Ni60Nb18Y22 alloy after high pressure torsion. Kovove Mater.–Metall. Mater. 2011, 49, 17–22. [CrossRef]

47. Straumal, B.B.; Kilmametov, A.R.; Ivanisenko, Y.; Mazilkin, A.A.; Kogtenkova, O.A.; Kurmanaeva, L.; Korneva, A.; Zięba, P.;
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