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Abstract: High-entropy alloys (HEAs) are called also alloys without a main component or multi-
principal alloys. They consist of five, six or more components in more or less equal proportions and
possess unique properties. Several dozens of thousands of publications have already been devoted to
bulk HEAs, while HEA coatings are just beginning to develop. More than half of the works on the
deposition of HEA coatings are devoted to laser cladding. In the laser cladding process, a mixture
of powders on a substrate is melted in a focused laser beam, which sequentially scans the substrate.
In the heated zone, the powder mixture melts. At the end of the crystallization process, a solidified
polycrystal and a small amount of residual melt are found in the heated zone. It is possible that the
grain boundaries (GBs) in the solidified polycrystal are incompletely or fully wetted by this liquid
phase. In this way, the GB wetting with a melt determines the morphology and microstructure of
HEAs coatings. This review analyzes GB wetting in single-phase HEAs, as well as in HEAs containing
two or more phases. We analyze how the HEAs’ composition, laser scanning speed, laser beam
power, external magnetic field or ultrasonic impact affect the microstructure and GB wetting. It is
also shown how the microstructure and GB wetting change over the thickness of the rather thick as
well as multilayer coatings deposited using a laser cladding.

Keywords: laser cladding; coatings; high-entropy alloys; grain boundary wetting; phase transitions;
phase diagrams

1. Introduction

Laser cladding is a modern coating technology for surface strengthening and repair [1].
The powder of a cladding material rapidly melts and solidifies under the laser irradiation.
Due to the high temperature gradient, the tough and fine-grained coating forms on the
substrate with a good metallurgical bond with it. The most frequently used laser cladding
schemes are the coaxial and preplaced powder systems (see schemes in Figure 1). In the
first variant the laser beam irradiates the surface of the substrate. As a result it forms a
liquid melt pool. The pressure of a carrier gas in the nozzle ejects the powder to be melted
from this nozzle to the liquid melt pool. The laser beam melts the powder into a cladding
layer. The laser beam moves synchronously with the powder feeding nozzle and scans the
substrate “line-by-line”. The second case is a preplaced powder system. In this system the
substrate is already covered by the cladding material. The laser beam scans the preplaced
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powder. It melts and rapidly cools down, thus forming a cladding layer. The coated sample
usually contains the following four zones: zone of cladding (CZ), zone of interface (IZ),
zone influenced by the heating (HAZ) and the substrate zone (SUB).
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The idea of high entropy alloys (HEAs) or alloys without main component or multi-
principal alloys has been first proposed by Prof. Brian Cantor with coworkers from the
University of Oxford [2] and Prof. Jien-Wei Yeh with his team from NTHU, Taiwan [3]. They
checked numerous alloys with 6 to 12 and more components in equiatomic proportions and
discovered many compositions where the uniform disordered solid solution is formed. It
was the astonishing and fully counter-intuitive discovery. It is because such alloys contain-
ing a high number of different elements in more or less equal amounts have a high mixing
entropy. This fact would lead, generally speaking, to amorphization. Nevertheless, the
novel HEAs have high hardness [4,5] and a reasonable strength at high temperatures [6];
they can also possess excellent oxidation [7], wear [8], and corrosion resistance [9]. The idea
soon appeared of depositing coatings of HEAs on the surface of the usual materials. This
gives the possibility to combine in such a way the advantages of coatings and substrates.
Recently, the focus of interest in HEA investigations shifted from one-phase homogeneous
solid solutions to heterogeneous HEAs containing more that one phase, the inhomoge-
neous distribution of components and other elements of inhomogeneity. Frequently, such
non-homogeneous structures can be successfully explained based on the concept of grain
boundary (GB) phase transformations. The GB phase transformations include GB wetting
by a second liquid or solid phase, and also formation of different thin GB phases [10–13].

Laser cladding is the most frequently used technology for the manufacturing of HEA
coatings [14–16]. HEA coatings can also be deposited by plasma cladding [17,18], plasma
spray [19–26], thermal spray [27], magnetron sputtering [28–37], electric arc deposition [38],
electron beam physical vapor deposition [39], and vacuum arc deposition [40–44]. The
solidification of melted pool during laser cladding and the resulting microstructure can be
strongly affected by complete or incomplete GB wetting. GB wetting phenomena caused
by laser cladding of HEA coatings is the topic of this review. GB wetting phenomena in
other HEA coatings will be discussed elsewhere.

2. Grain Boundary Wetting Phase Transitions

Usually, HEAs contain at least five different components, and respective equilibrium
phase diagrams should be constructed in at least 5 dimensions. Nevertheless, we can
discuss the most important features of GB wetting phase transitions [45] using the simplest
two-dimensional scheme for binary alloys. Such a schematic phase diagram for two
components in the system is shown in Figure 2. Bold lines for the bulk phase transitions



Coatings 2022, 12, 343 3 of 22

are liquidus, solidus, solvus and eutectic line. Thin lines at Twmin and Twmax show the
tie-lines of the GB transitions. During the cooling, the alloy is first in the liquid area L and
then crosses the liquidus line, entering the L + α two-phase area. In this L+α, the liquid
phase, L, is in equilibrium with the solid phase, α (strictly speaking it is the solid solution
based on component A). By decreasing temperature, the portion of melt L decreases and
that of solid solution α increases. The composition of solidifying α-phase follows the
solidus line. It means that the first portions of α-phase are free from component B, and
afterwards the concentration of B increases. If the concentration of B is low (see lines
a,b,c,d in Figure 3e), the solidification finishes at the solidus line. As a result the solid alloy
contains only α-phase, but the last solidified portions are enriched by the component B.
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ple, if HEA contains six components it needs for its description the phase diagram in six 
dimensions. In such a case an alloy starting to solidify by cooling from the melt, L, may 
intersect several multiphase areas (and not just one two-phase region, α + L) until it be-
comes completely solid, α. In such multiphase regions more than one liquid and one 
solid phase(s) may coexist. The polycrystal in the two-phase region, α + L, contains the 
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aries (IBs). Let us consider now the triple junctions (TJs) between two IBs and GB. Here 
GB contacts with the melt (see schemes on the left-hand side of Figure 2). 

Figure 2. Scheme explaining the GB wetting phenomena in a binary A–B phase diagram. The bulk
phase transformations are shown by the thick lines. The tie-lines at Twmin and Twmax are for the
GB wetting by the liquid phase and are shown by the thin lines. On the right-hand side of the
diagram the micrographs are shown for the microstructure of Al–Mg samples. Case (a) is for the
alloy annealed above Twmax (in this sample all GBs were completely wetted). Case (b) is for the alloy
annealed between Twmin and Twmax (in this sample several GBs are fully wetted and the other GBs
are incompletely wetted). Case (c) is for the alloy annealed below Twmin (no completely wetted GBs
at all). The micrographs are reprinted with permission from Ref. [46].
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Figure 3. SEM micrographs of Mo0, Mo0.15, Mo0.20 and Mo0.25 HEA coatings (a) Mo0; (b) Mo0.15;
(c) Mo0.20; (d) Mo0.25. The red points and letters A and B mark the locations of composition
measurements. (e) Scheme with the binary phase diagram for the explanation of respective GB wetting
processes. The dotted red arrows show the cooling trajectories corresponding to the micrographs
(a–d). Micrographs (a–d) are reprinted with permission from Ref. [47]. Copyright 2021 Elsevier.
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In multicomponent HEAs, the GB wetting transitions are not so simple. For example,
if HEA contains six components it needs for its description the phase diagram in six
dimensions. In such a case an alloy starting to solidify by cooling from the melt, L, may
intersect several multiphase areas (and not just one two-phase region, α + L) until it
becomes completely solid, α. In such multiphase regions more than one liquid and one
solid phase(s) may coexist. The polycrystal in the two-phase region, α + L, contains the GBs
as well as boundaries between the α-phase and the melt L called interphase boundaries
(IBs). Let us consider now the triple junctions (TJs) between two IBs and GB. Here GB
contacts with the melt (see schemes on the left-hand side of Figure 2).

Let us suppose that the GB energy, σGB, is less than the energy of the two solid/liquid
IBs, 2σSL (see lower scheme in Figure 2). The GB and IBs form in this case the
contact angle, θ > 0, at this TJ, and the GB wetting is called partial (or incomplete). If
σGB > 2σSL (see upper scheme in Figure 2) then θ = 0. In this case, the solid α-grains would
be separated by a thick liquid layer. This is the case of complete GB wetting by the melt.
It is described for many binary alloys. In this case the contact angle θ usually decreases
with growing temperature and can reach zero at a certain temperature, Tw [46,48–50]. At
Tw the incomplete GB wetting changes to the complete one. Tw is the temperature of the
GB wetting phase transformation. The GB wetting phase-transition can be of the first or
second order as for conventional bulk phase transformations [51–53]. If the GB wetting
transformation is of a first-order, then the first derivative of θ, with respect to temperature,
dθ/dT has a discontinuity at Tw [46,51,52]. In this case, exhibits dθ/dT drops suddenly
from a certain finite value to 0 [46,51,52]. If the GB wetting phase transition is continuous
(or of a second-order), then dθ/dT continuously decreases with increasing T and reaches
zero dθ/dT = 0 at Tw [51,52]. We have to underline here that the σGB value depends on the
GB misorientation angle, χ, as well as on the GB inclination angle, ψ [54]. The σGB(χ) and
σGB (ψ) dependences possess sharp cusps at certain χ and ψ [55]. Therefore, the interval
of σGB values can be very broad. The higher is σGB, the smaller is the θ value at the GB
TJ with the melt [56,57]. In other words, the θ values in a two-phase polycrystal could be
very different at each fixed temperature. With increasing temperature, these θ values for
different GBs would decrease with different rates. This is the reason why the spectrum of
Tw temperatures in a polycrystal can be very wide.

Typical examples of such two-phase polycrystals microstructures are shown in Figure 2
for the binary Al–Mg alloys. Thus, regarding the GB wetting phase transitions, the bulk
phase diagram becomes two additional GB tie-lines. The Twmin tie-line corresponds to the
GBs wetting transition from partial to complete wetting for the grain boundaries having
highest energy σGB. Under Twmin one cannot observe in the alloy any fully wetted GB. The
polycrystal under Twmin contains only partially wetted GBs with θ > 0. First, completely
wetted GBs appear with the heating of the alloy above Twmin. Above Twmin, the portion of
fully wetted GBs increases with increasing temperature. At Twmax it reaches unity. Another
tie-line shows the temperature Twmax. Above Twmax all GBs contain the melted layer and
are, therefore, completely wetted. In this case each grain is completely surrounded by
the melt. It cannot contact other abutting grains. This is because the non-wetted GBs
are thermodynamically disadvantageous above Twmax. In other words, above Twmax all
solid crystallites are detached from their neighbors by the skins of a liquid phase. Thus, a
conventional binary phase diagram becomes the new GB tie-lines in the α + L area. Such
new tie-lines are due to the GB wetting phase transitions. The conventional phase diagrams
suppose that all bulk phases are single crystals and ignore the GBs and GB phenomena.

3. GB Wetting in the HEA Coatings Containing One Phase

In Ref. [47] the FeNiCoCrMox (with atomic ratio x = 0, 0.15, 0.20, 0.25) HEA coatings
were prepared by laser cladding on 316 stainless steel substrate. The coatings were named,
respectively, Mo0, Mo0.15, Mo0.20 and Mo0.25. The preplaced powder system was used.
The X-ray diffraction (XRD) patterns show that with increasing concentrations of Mo the
high entropy alloy coatings still have a single-phase face-centered cubic (fcc) structure.
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The XRD patterns contain no diffraction peaks except for (111), (200), (220), (311) and
(222) fcc solid solution diffraction peaks. They only shift a little due to the change of lattice
period. Scanning electron microscopy (SEM) micrographs of these coatings are shown in
Figure 3a–d. The composition was locally measured by the energy dispersive spectrometry
(EDS). Figure 3e shows the scheme with the binary phase diagram for the explanation of
the respective GB wetting processes. The dotted red arrows show the cooling trajectories
corresponding to the micrographs (a)–(d). As mentioned above, if the trajectories (a)–(d)
do not intersect the line of eutectic transformation, the Mo-poor dendrites solidify first,
and last enriched portions of the melt between dendrites solidify at the end. We can see
that dendrite grains do not grow together during the solidification, they do not form
GBs “dendrite/dendrite”. Thus, these GBs were fully wetted by the Mo-enriched melt.
Nevertheless, after solidification the FeNiCoCrMox HEAs contained one fcc phase, but
with different composition in bulk and in GBs.

The comparable behavior of GB wetting took place also in the CoCr2FeNiMox HEA
with changing Mo content x = 0, 0.1, 0.2, 0.3, 0.4 [58]. In Ref. [59] the AlCoCrFeNiSix HEAs
with x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5 have been deposited by laser cladding. The coatings
always contain the single fcc phase, as in Ref. [47]. However, the transition between
complete and incomplete GB wetting took place with increasing Si content [59]. This means
that the Twmin and Twmax tie-lines (see scheme in Figure 3e) are positioned higher, and with
increase of Si content the solidification trajectories come to the area below Twmin before
the solidification is finished. One can find another pure example of the complete wetting
process for the fcc/fcc GBs by the final portions of solidifying melt in the CrFeNiNbTi
alloy [60]. The small amount of equiaxial Fe2Ti precipitates does not disturb the perfect
picture of a GB wetting. In Ref. [61] the CoCrCu1-xFeNix HEA contains only one fcc phase
at all studied x values (namely, x = 0, 0.1, 0.3 and 0.5). However, the wetting conditions
change, similar to [59]. Namely, at x = 0 almost all grain boundaries in the face-centred
cubic matrix phase are completely wetted by the Cu-rich fcc phase. When x increases, the
portion of partially wetted GBs increases as well.

4. GB Wetting in the HEA Coatings Containing Two Phases

Ref. [62] gives another example when the solidified HEA contains two different phases,
namely the fcc and bcc (base centered cubic) phases. In that study, the AlCoCrFeNiTi0.5
coating was manufactured by laser cladding with preplaced powder system from pure
(>99.5 wt%) Al, Co, Cr, Fe, Ni and Ti elemental powders with particle size ranging from
48 µm to 75 µm. The XRD pattern of the coating demonstrated that it was composed of
major fcc and minor bcc phases. The diffraction peaks of the fcc phase were in accordance
with the peaks of AlNi2Ti (PDF #65–432) or AlCo2Ti (PDF #65–4682), and the bcc phase
corresponded to the Fe–Cr phase (PDF #34–0396). In Figure 4, the matrix fcc phase is
called dendrite region (DR1). Its grains are surrounded by the layers of interdendrite bcc
phases (IR1 and IR2). It is clearly visible that the bcc phase completely wets all fcc/fcc GBs
(Figure 4a).

TEM permitted detailed analysis of the structure of bulk and GB phases. Figure 5
contains the bright field (BF) images for the DR and IR regions. Figure 5b–d are the
corresponding selected area diffraction patterns (SADP) of area A (the phase appears
light-grey), area B (the phase appears dark-grey), and area C (the phase appears black),
respectively. The phase appearing light-grey is the DR one, while the other two phases
appearing black and light-grey are the GB IR ones. The indexed SADP in Figure 5b shows
that the DR structure is face-centred cubic with a lattice parameter of 0.5761 nm, which is
close to the values of 0.5848 nm (AlNi2Ti, PDF #65–0432) and 0.5865 nm (AlCo2Ti, PDF
#65–4682). Both GB phases (dark-grey and black) are bcc ones. The SADP in Figure 5c
of dark-grey IR phase is in accordance with the bcc structure of Fe–Cr (PDF#34–0396,
0.2876 nm). The SADP in Figure 5d of black IR phase is in accordance with the bcc
Cr13Fe35Ni3Ti7 structure (PDF#16–0443, 0.8856 nm).
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Figure 5. TEM micrographs for the AlCoCrFeNiTi0.5 coating: (a) bright field image of DR and IR
phases, (b) SADP of bulk area A, (c) SADP of GB area B, (d) SADP of GB area C. Reprinted with
permission from Ref. [62]. Copyright 2021 Elsevier.

The schematic binary phase diagram in Figure 4c shows the possible arrangement
of GB wetting tie-line(s) as well as liquidus and eutectic lines. In contrast to the previous
example given in Section 2, the solidification trajectory (dotted light-red arrow) does not
finish in the α-area but crosses the horizontal line of eutectic transition L→ α + β. For the
studied AlCoCrFeNiTi0.5 coating [62], α in the scheme corresponds to the major fcc phase
and β is for the minor bcc phase(s). At a late solidification stage, the last portions of the
melt completely wet all fcc/fcc GBs and then decompose according the reaction L→ α + β.
Another perfect example of two-phases HEA is the FeNiCoCrTi0.6Nb0.4 alloy where the
Laves phase completely wets the bcc/bcc GBs in the matrix [63].

5. GB Wetting in the HEA Coatings in Case of Transition from One Phase to Two Phases

We will next discuss the example of GB wetting in HEAs where the transition from
one phase to two phases takes place with changing composition. In Ref [64], the HEA
coatings AlxCrFeCoNiCu (x: molar ratio, x = 0, 0.1, 0.3, 0.5, 0.7, 0.8, 1.0, 1.2, 1.5, 1.8, or 2.0)
were prepared via laser cladding with the preplaced powder system. It can be seen that
the Al concentration varied across a broad interval for 11 different concentration values.
The XRD patterns (Figure 6a) show that the samples with x = 0, 0.1, 0.3 contain only one
fcc phase. Their microstructure (Figure 7a–f) is very similar to that shown in Figure 3. The
composition has been measured in the points DR 1,2,3 and 4 inside the dendrites and in
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the points IR 1, 2, 3 and 4 between the dendrites. The coating in all IR points was strongly
enriched by copper and in the IR 2, 3 and 4 it was enriched by Al. In other words, at the last
stage of crystallization the solid grains were completely isolated from their neighbors by
the Cu- and Al-rich melt before solidification. It means that in the schematic phase diagram
(Figure 8g) the samples followed the trajectories (0, 0.1, 0.3) shown by red arrows. In other
words, during solidification in the α+L area the samples were above the Twmax tie-line
and all fcc/fcc GBs were fully wetted by the liquid phase. In the sample with x = 0.5, a
small amount of bcc1 phase appeared (Figure 6a), but the microstructure of this sample
(Figure 7d) was still very similar to the samples with x = 0, 0.1, 0.3 (Figure 7a–c). It means
that the solidification followed the trajectory “0.5” in the scheme Figure 8g.
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Figure 7. The microstructure of coatings with low Al content. (a) FeCoNiCrCu. (b) is the enlarged im-
age for Figure 7a. (c) Al0.1CrFeCoNiCu. (d) is the enlarged image for Figure 7c. (e) Al0.3CrFeCoNiCu.
(f) is the enlarged image for Figure 7e. (g) Al0.5CrFeCoNiCu. (h) is the enlarged image for Figure 7g.
DR1, 2, 3 and 4 show the points for concentration measurements inside the dendrites. IR1, 2, 3 and 4
show the points for concentration measurements between the dendrites. Reprinted with permission
from Ref. [64]. Copyright 2021 Elsevier.

The samples x = 0.7, 0.8, 1.0 contained not only the fcc phase but two additional bcc1
and bcc2 phases (Figure 6b). The respective microstructures are shown in Figure 8. They
are quite different from those in Figure 7 and have some similarity with microstructures
shown in Figure 4 In other words, the matrix grains have fcc structure, and the last portions
of the melt are decomposed in the fcc + (bcc1,bcc2) mixture. These portions of Al-rich
melt also wetted the fcc/fcc GBs, but the wetting was not as perfect as in Figure 7a–c for
x = 0, 0.1, 0.3. Some grains of the matrix fcc phase formed the GBs with each other and,
therefore, the GB wetting was only partial for them. This can be schematically explained
with trajectories “0.7, 0.8, 1.0” in Figure 8g. Namely, just before the eutectic line, the samples
were below the Twmax tie-line (and maybe even below the Twmin tie-line) and, therefore,
not all GBs were completely wetted. Moreover, we can see that amount of completely
wetted GBs decreases when the Al concentration increases from 0.7 to 1.0. Most probably,
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this is because the schematic binary phase diagram in Figure 8g is too simple for the six-
component AlxCrFeCoNiCu HEAs. It does not take into account that indeed not two α+β
but three solid phases fcc + (bcc1,bcc2) were present in the studied samples.
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Figure 8. The microstructure of coatings with medium Al content. (a) Al0.7CrFeCoNiCu. (b) is
the enlarged image for Figure 8a. (c) Al0.8CrFeCoNiCu. (d) is the enlarged image for Figure 8c.
(e) Al1.0CrFeCoNiCu. (f) is the enlarged image for Figure 8e. (g) Schematic phase diagram with
GB wetting tie-lines. The dotted red arrows with Al concentrations on the top show the cooling
trajectories corresponding to the micrographs in Figures 7 and 8. Micrographs (a–f) are reprinted
with permission from Ref. [64]. Copyright 2021 Elsevier.

The interesting example of the transition from one-phase to two-phase coatings was
observed in the HEA CoCrFeNiAlxMn(1−x) so-called dual-phase coatings [65]. The Al
content x in these alloys increased from zero to 0.8 (x = 0, 0.2, 0.4, 0.6, and 0.8). At low
x < 0.5 the alloy contains only fcc phase. At x > 0.5 the bcc phase appears. The bcc phase
completely wets some fcc/fcc GBs and incompletely wets the rest of the fcc/fcc GBs. In
the AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) HEAs the microstructure at x = 0.3 is similar to the
one-phase case shown in Figure 7, the microstructure at x = 1.0 is similar to the two-phase
one shown in Figure 4, but at the intermediate concentration x = 0.7 no indications of GB
wetting are present at all [66]. In the FeCoNiTiAlx alloys the increase of Al content from
zero through 0.5 to 1 promoted the transition from fcc (at x = 0) to bcc (at x = 1) phase [14].
In two-phase fcc+bcc alloys at x = 0.5 some matrix bcc/bcc GBs were fully wetted and
others were partially wetted by the fcc phase.

HEA coatings can also contain more than two phases as, for example, in AlCrCo
NiFeCTax HEAs with x = 0, 0.5 and 1.0 [64], TiZrAlNbCo HEAs [67], ceramic particle
reinforced FeCoNiCrMnTi HEA with Laves phase, bcc-phase and TiN in the fcc/fcc GB
wetting layers [68], and CoCr2FeNb0.5NiSi coating with fcc, Laves and chromium oxide
phases [69]. In these cases the microstructures and GB wetting-dewetting phenomena are
even more complicated.

6. Influence of Laser Scanning Speed on GB Wetting in HEA Coatings

This section will look at how laser scanning speed can affect the GB wetting in HEA
coatings. In Ref. [70] the Al16.80Co20.74Cr20.49Fe21.28Ni20.70 HEAs were fabricated by laser
cladding with different laser scanning speeds. The thickness of the powder layer was 1 mm.
Laser cladding was carried out by IPG YLS-5000 fiber system with a protective gas and laser
power 3000 W. The laser scanning speeds were 7, 9, 11, 13, 15, 17, 19 and 21 mm/s for eight
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HEA coatings named as V7, V9, V11, V13, V15, V17, V19 and V21. The XRD patterns show
that the as-deposited Al16.80Co20.74Cr20.49Fe21.28Ni20.70 HEAs contain the major phase with
bcc lattice and minor phase with fcc lattice. Figure 9 shows the SEM micrographs of these
coatings deposited with different laser scanning speeds. At low speeds of 7 and 9 mm/s, the
5–7 µm thick layers of fcc phase (appears bright in SEM micrographs) completely wetted the
GBs between bcc matrix grains (appear dark). Moreover, the slow formation rate of HEA
coatings allowed the growth of Widmanstätten plates of fcc phase from the GBs into the
bulk of the bcc matrix. Only a few fcc nanoparticles precipitated in the bulk. At 11 mm/s
the Widmanstätten plates disappeared. Only a thick “coat” of fcc precipitates covers the
bcc/bcc GBs. At speeds of 13, 15, 17 and 19 mm/s, the portion of nanoprecipitates increased
and the thickness of fcc GB layers continuously increased. Nevertheless, all bcc/bcc GBs
were still completely wetted by the thin fcc layers. However, at the highest studied speed
of 21 mm/s, only about one half of bcc/bcc GBs were completely wetted, while the other
half contained separated particles of fcc-phase. These GBs were partially wetted. Thus, the
increasing speed of the laser scanning is equivalent to the shift of Twmin value to higher
temperatures (see the dotted red arrow in the scheme at Figure 4c) and not all bcc/bcc GBs
become completely wetted by the last portion of the melt before eutectic crystallization.
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7. Influence of Laser Beam Power on GB Wetting in HEA Coatings

The laser beam power can also influence the GB wetting conditions in HEA coatings. In
ref. [71] the ((CoCrFeNi)95Nb5)100-xMox HEA coatings with x = 1, 1.5 and 2 were fabricated
under different laser power of 800, 1000 and 1200 W. At low Mo content of x = 1 and 1.5, the
coating contained only one fcc phase (see XRD patterns in Figure 10a). The microstructure
of these coatings at constant laser beam power of 800 W demonstrates the complete wetting
of Mo-depleted grains with the Mo-rich melt (Figure 10 b,c). This structure is similar to
that shown in Figures 3 and 7 where the solidification trajectories do not cross the line of
eutectic transition (dotted red arrows a,b,c,d in Figure 3e, as well as dotted red arrows 0,
0.1, 0.3 in Figure 8g). At x = 2 the small amount of second phase (Laves phase, Figure 10a)
appears. However, the few precipitates of Laves phase do not disturb the complete GB
wetting of fcc/fcc GBs by the last portions of solidified melt (see Figure 10d). This situation
is similar to that shown in Figure 6g,h (micrographs) and dotted red arrow “0.5” in the
scheme of Figure 8g.
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Figure 11 shows the SEM images for the microstructure of ((CoCrFeNi)95Nb5)99Mo1
HEA coatings (i.e., for x = 1) deposited with different laser beam power, namely 800, 1000
and 1200 W. It is clearly visible that as a result of the increase of laser beam power a
transition of complete GB wetting to incomplete wetting takes place (compare Figure 11b,c
for 800 and 1000 W, respectively). Further increase of laser beam power up to 1200 W
(Figure 11d) completely destroys the wetting of fcc/fcc GBs with the last portions of the
melt. In Ref. [72], the (CoCrFeNi)95Nb5 HEA coating was deposited with laser energy
densities E of 100, 111, 125, 143, and 167 J/mm2. The coatings have the fcc phase as a matrix
and minor Laves phase. The Laves phase completely separated the fcc grains at 100 J/mm2.
With increasing E the portion of completely wetted fcc/fcc GBs continuously decreased
from ~100% at 100 J/mm2 to only ~10% at 167 J/mm2 [72]. Thus, the increase of laser beam
power corresponds in the framework of our scheme to the shift of Twmin value to higher
temperatures. Therefore, the increase of laser beam power has an influence similar to the
growth of laser beam speed (see the Section 6 above).

Not only laser beam power or laser beam speed can influence the microstructure
and GW wetting behavior. For example, the magnetic field of 1 T applied during laser
cladding of AlCoCrFeNiTi HEAs arranges the ferromagnetic precipitates in the ordered
rows and modifies in this way the conditions for GB wetting [73,74]. Another example is the
ultrasonic impact treatment of the Al1.5CoCrFeMnNi HEA [75]. The ultrasonic treatment
also influences the distribution of liquid phase (and, therefore, of the minor bcc phase)
between the crystallites of the solidifying fcc phase.
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permission from Ref. [71]. Copyright 2021 MDPI.

8. Influence of Distance from the Surface on GB Wetting in HEA Coatings

In this section we give examples of how the microstructure of a laser cladded coating
changes with its depth and also how the GB wetting changes. We start with the one-phase
HEAs similar to those discussed in the Section 3. Figure 12 shows the cross-section of
the laser cladded FeCoCrNiWC coating [26]. It contains one fcc-phase with interdendritic
areas enriched by Cr and W. Similar to microstructures shown in Figure 3, the portions of
the Cr- and W-rich melt fully or partially wet the fcc/fcc matrix GBs. The micrographs in
Figure 12b–d show the magnifications of the top, middle and the bottom regions, respec-
tively. It is clearly visible, how the morphology of fcc dendrites changes, and the top layer
contains a lower portion of completely wetted GBs. The columnar grains in the bottom
part of the AlCoCrFeNiSi laser cladded coatings change to the equiaxial ones [76]. They are
almost completely separated by the thin Al-enriched GB layers. In the FeCrCoNiTiAlBC
HEA reinforced with self-generated TiC particles, the equiaxed grains with completely
wetted GBs were observed close to the substrate [77]. In the middle part of the coating the
grains became elongated and switched to flower-like structures close to the surface [77].

Consider now the HEA coatings containing two phases like alloys shown in
Figures 4, 7 and 8. In Ref. [78], the MgMoNbFeTi2Yx HEAs were studied for x = 0, 0.4%,
0.8% and x = 1.2% with average coating thickness of 1.3 mm after laser cladding. The
coatings contained the major bcc phase rich in Mo and Nb, minor bcc phase rich in Mg
and Ti as well as small amounts of oxides and (Nb,Ti)C carbide. Figure 13 shows the SEM
micrographs of MgMoNbFeTi2Yx HEA for (a) x = 0, (b) x = 0.4%, (c) x = 0.8%, (d) x = 1.2%.
These are the cross sections made at the 0.3 mm depth from the coating surface. The
microstructure is very similar to those shown in Figures 4, 7 and 8 for the GB wetting of
two-phase HEAs. Here, the minor bcc-phase also wets the majority of GBs in the major
bcc-phase. The black arrows in Figure 13a show the particles of iron, magnesium and
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yttrium oxides. The red circles in Figure 13a,b mark black particles of intermetallic com-
pounds. The addition of yttrium leads to the obvious grain refinement. The cross-sections
through all thickness of the coating and substrates in Figure 14 show that the double-phase
structure with wetted GBs does not form immediately at the beginning of solidification.
To the contrary, close to the substrate the 2–4 µm thick layer of the major bcc-phase crys-
tallizes first. The double-phase structure with wetted GBs forms later. Similar behavior
of the GB wetting in the cross-section of two-phase laser-cladded HEAs was observed for
the AlxMo0.5NbFeTiMn2 (x = 1, 1.5, 2) alloys [79], AlCrFeNi2W0.2Nbx (x = 0.5, 1, 1.5, 2)
alloys [80], FeCrCoAlMn0.5Mo0.1 HEA [81], and Fe5Cr5SiTiCoNbMoW HEA [82]. In the
last case, the 5–7 µm thick one-phase layer close to the substrate is clearly seen.
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from Ref. [26]. Copyright 2019 Elsevier.
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circles in Figure 13a,b mark black particles of intermetallic compounds. Reprinted with permission
from Ref. [78]. Copyright 2020 Elsevier.
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Therefore, the conditions for GB wetting can change across the HEA coating during
laser cladding. We have to remember that the thin upper part of the substrate can also melt
during laser cladding and, therefore, modify the composition of the bottom layer of the
coating. One can also find other cases of changing GB wetting in HEA coatings: These are,
for example, the NiTi-based HEAs such as NiTiCuAl functionally graded coatings on Mg–Li
substrates [83] and NiTiCrNbTax refractory coatings with variable Ta content (x = 0.1, 0.3,
0.5, 1) [84]. Another group of coatings builds the FeCoNi-based HEAs such as FeCoNiCrMo
alloy containing the CeO2 particles [85], the ceramic p6rticle reinforced FeCoNiCrMnTi
HEAs [68], single-phase fcc CoCrFeNiSi coatings [86], the Al2CrFeCoxCuNiTi coatings
with x = 0.0, 0.5, 1.0, 1.5, 2.0 [16], AlFeCuCrCoNi-WCx HEA coatings with carbon content
of 5, 10 and 15 at.% [87] and Ni1.5CrCoFe0.5Mo0.1Nbx eutectic HEA coatings with x = 0.55
(hypoeutectic), 0.68 (eutectic), 0.8 (hypereutectic alloys) [15]. Final important examples are
the NbTaTiZr refractory medium-entropy alloy coatings [88] as well as carbide-containing
Fe50Mn30Co10Cr10-xNbC composite coatings [89].

9. GB Wetting in Multitrack and Multilayer HEA Coatings

In Section 8 we considered the change of GB wetting conditions with depth in single-
layer and single-track HEA coatings deposited by the laser cladding. We had in mind
the possible melting of a thin substrate layer. However, during the laser cladding of a
big substrate the laser beam successively scans one track after another (Figure 1). During
such scanning the previous track is partially melted during the next step of the coating
process, and as a result the tracks overlap and coat all substrate [90]. During laser cladding,
the molten metal would form an arc shape under the action of surface tension. If the
pass-by-pass cladding method is adopted, in some cases a complete cladding layer can
be obtained in the first pass, but the volume of the cladding layer could decrease due to
insufficient powder in the second pass, as shown in Figure 15a,b. To avoid this situation, the
separated layer cladding method was proposed in Ref. [91] for the FeCoCrNiMnAlx HEA
coatings as shown in Figure 15a,c–e. The cladding layers with odd numbers (Figure 15c,d)
were produced first, and then the surface was cleaned. The gaps between adjacent cladding
layers were then filled with the powder, and then the even-numbered cladding layers were
produced to complete the laser cladding process.

In case of the deposition of an HEA coating by the laser cladding on a pipe (Figure 16),
the consecutive layers strongly overlap each other [92]. During the cladding process, the
powder becomes a liquid alloy after heating by a laser beam and falls on the surface of the
substrate. During the cladding process, the steel pipe (substrate) is rotated at a high speed.
The powder feeding nozzle and laser beam move along the TD.

In Figure 17, the microstructure of the cross-section of a FeCoNiCrAl coating on a
carbon steel pipe (Figure 17a) and on a stainless steel pipe (Figure 17b) is shown. Five
overlapping subsequent layers are visible in these micrographs. The wetting of the grain
boundaries in the dark phase by the layers of a phase appearing light is clearly visible in
Figure 17b in the layers n, n + 1 and n + 2 close to the stainless steel substrate. The GB
wetting layers are enriched by iron but have the same fcc cristal lattice [92]. The upper
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layers with numbers n + 3 and n + 4 are more uniform and do not reveal almost any GB
wetting. The FeCoNiCrAl multilayer coating on a carbon steel pipe (Figure 17a) is more
uniform and does not demonstrate any GB wetting. Therefore, the GB wetting in Figure 17b
is most probably due to the partial melting of a stainless steel substrate.
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Figure 15. Scheme of the separated layer cladding method for the FeCoCrNiMnAlx HEA coatings.
(a) First pass, a complete cladding layer. (b) Second pass, decrease of the volume of the cladding layer
due to insufficient powder. (c) Separated layer cladding method. (d) The cladding layers with odd
numbers are produced first. (e) The gaps between adjacent cladding layers are then filled with the
powder, and then the even-numbered cladding layers were produced to complete the laser cladding
process. Reprinted with permission from Ref. [91]. Copyright 2020 Elsevier.
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Figure 17. Microstructure of FeCoNiCrAl coating: (a) on carbon steel pipe, (b) on stainless steel pipe.
Reprinted with permission from Ref. [92]. Copyright 2021 Elsevier.

In some cases, an intermediate coating is deposited between substrate and main HEA
coating [93]. For example, in Ref. [93] the CoCrFeMnNi HEA cladding layer was pre-
coated on the substrate in order to improve the crack resistance of CoCrFeMnNi + x(TiC)
composite coating (CC), before fabricating the composite cladding layer. Figure 18 shows
the cross-section of the H13 steel substrate in the bottom, HEA cladding layer in the
middle and CoCrFeMnNi + x(TiC) composite coating on the top. It can be seen how the
“pure” CoCrFeMnNi HEA layers (appearing white) wet the arc-shaped boundaries between
subsequent tracks of the upper CoCrFeMnNi + x(TiC) composite coating (appearing grey).
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layer (middle) and CoCrFeMnNi + x(TiC) composite coating (top). Reprinted with permission from
Ref. [93]. Copyright 2021 Elsevier.

In Ref. [94], the AlCoCrCuFeNi HEA coatings after one, two and three layers were
laser cladded on the substrate of a AZ91D Mg-based alloy. Close to the interface with a HEA
coating, the substrate was composed of Mg dendrites and interdendritic Mg+Q eutectics.
The multilayer coating contains the thin composite bottom layer and a top thick dense HEA
region. The dominated microstructures in the dense HEA region are columnar dendrites of
a bcc phase (Figure 19). Figure 19 shows the microstructure close to the interface between
the first and second layer. In both layers the last portions of a melt (enriched on Al) wet
the GBs between the bcc matrix grains (like in Figure 3). However, the morphology of GB
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wetting layers is different in the first and second layer. This may be due to the higher Mg
concentration in the first layer due to the partial melting of a substrate.
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Figure 19. SEM micrograph revealing the morphologies on the both side of the re-melted boundary
between 1st and 2nd layers of the AlCoCrCuFeNi HEA coating (denoted by the line). Reprinted with
permission from Ref. [94]. Copyright 2019 Elsevier.

In Ref. [95], the double layer AlCoCrFeNiSi-based HEA coating reinforced in situ
by Ti(C, N) was fabricated on the H13 steel substrate using laser cladding with coaxial
powder feeding direct laser deposition system equipped with an ytterbium fiber laser.
The equiatomic CoCrFeNi HEA powders were mixed with high-purity Ti and C powders
giving the molar ratio of CoCrFeNi, Al, Si, Ti to C powder as 8:1:1:1:1. Considering the
dilution of melted substrate in the HEA molten pool, a double-layer gradient coating is
fabricated on the substrate. Therefore, the coating has the functional gradient structure (see
Figure 20). From the depths of the five zones shown in Figure 20, it can be deduced that
zone I and zone II constitute the second layer, and zone IV is the first layer. Zone III is the
transition region between first layer and second layer, while zone V is the transition region
between first layer and H13 substrate.

In zone I the bcc solid-solution matrix is formed with titanium disilicide TiSi2 layers
in GBs (Figure 20). The titanium disilicide TiSi2 (appearing white in Figure 21b) completely
wets about 80% of GBs in the bcc phase in Zone I (appearing blue in Figure 21b). The
titanium carbonitride Ti(CN) (appears red in Figure 21c) has a shape of isolated round
particles and does not “participate” in GB wetting. It is supposed in [95] that the titanium
diffusion into carbon powder particles leads to the nucleation of TiC carbide particles in
the melt. Afterwards, the TiC carbide particles grow during solidification. In Ref. [95],
the nitrogen played the role of shielding gas for the laser cladding. The nitrogen atoms
dissolved in the molten pool and replaced some carbon atoms allowing the precipitation
of Ti(C,N) particles. The highest average hardness was in the zone I with a depth of ~100
µm (see Figure 20). With the increasing depth, the hardness gradually decreased from
934 ± 65HV to about 800HV. In the deeper layer II (see Figure 20) the amount of matrix
bcc phase increased and that of the TiSi2 and Ti(CN) phases decreased. Nevertheless, the
layers of TiSi2 phase completely wet almost all bcc/bcc GBs (see Figure 20). In the Zones III
and IV the TiSi2 and Ti(CN) phases disappear and the ordered Al-Ni-Ti B2 phase appears
instead. In this two-phase mixture no GB wetting is present. Therefore, the dilution of a
H13 steel substrate in the first melted layer during laser cladding, indeed, modifies not
only composition, but also the GB wetting conditions.
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Figure 20. The HEA gradient coating: the hardness depth profile. The microstructures are placed at
corresponding depth. The meaning of Zones I to V is explained in the text. Reprinted with permission
from Ref. [95]. Copyright 2021 Elsevier.
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Figure 21. The microstructures with EBSD and EDS results of in the zone I (see Figure 12), (a) EBSD
band contrast (BC) map, (b) EBSD phase map, (c–f) EDS element distribution maps for Si, Ti, N and
C. Reprinted with permission from Ref. [95]. Copyright 2021 Elsevier.

Thus, for the deposition of coatings using laser cladding, the preparation of multi-pass
thick coatings by the overlay processing is very important. This process allows production
of the gradient functional structure on the coated surface [96]. The cladding layer always
includes the partially melted substrate in its bottom part in the interface dilution region [97].
In case of multi-pass thick coatings not the substrate but the previous partially remelted
and solidified HEA layer is included instead. One can expect, therefore, that the portions
with less pronounced GB wetting (like Zones IV and V in Figure 20) would be excluded
from the multilayer HEA coatings and only periodically repeated layers with good GB
wetting similar to Zones I and II (see Figure 20) would be present. Such a structure could
prevent unwanted cracking through the whole multilayer coating [98]. The remelting
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takes place also in the overlapping neighboring laser line scans [90–92,98]. Therefore, the
lateral shift of the scan tracks or even their axial rotation for the subsequent coating layers
could additionally improve the wear properties [99] or prevent the cracking of a hard
coating [100,101].

10. Conclusions

This review analyzes the grain boundary (GB) wetting in the high-entropy alloys
(HEAs) coatings deposited by laser cladding. If an HEA contains only one phase, this
means that during solidification, the HEAs intersect only the liquidus and solidus lines
in the phase diagram. In this case, the melt enriched with 1–3 components wets the GBs
in the solid phase, poor in these components, and then solidifies, forming a phase with
the same crystal lattice as the matrix. HEAs can also contain two or more phases. In this
case, during solidification, the HEA crosses the liquidus line, and then the line of eutectic
transformation. In this instance, the last portions of the melt, which completely or partially
wet the GBs, decompose into a mixture of two or more solid phases. Then, in the solid state,
the second, third, and further phases form interlayers in GBs. They separate the crystallites
in the matrix phase from their neighbors. The transition from complete to incomplete
GB wetting occurs, as a rule, when the laser beam power of the scanning speed increases.
The microstructure and GB wetting can also be influenced by the HEAs composition, the
external magnetic field or ultrasonic impact. The microstructure and GB wetting also
change significantly over the thickness of the (rather thick) coatings deposited by the laser
cladding. Especially interesting is the phenomenon of remelting of HEAs in neighboring
tracks or double and multilayer coatings. In this case, the composition gradient in the
depth can also modify the conditions for GB wetting.

11. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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