Using Severe Plastic Deformation to Produce Nanostructured Materials with Superior Properties

Ruslan Z. Valiev,1 Boris Straumal,2 and Terence G. Langdon3

1Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, Ufa, Russia; email: ruslan.valiev@ugatu.su
2Osipyan Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
3Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton, United Kingdom

Keywords
bulk nanostructured materials, severe plastic deformation, ultrafine-grained biomaterials, functional properties, mechanical properties, nanostructural design

Abstract
The past decade was marked by significant advances in the development of severe plastic deformation (SPD) techniques to achieve new and superior properties in various materials. This review examines the achievements in these areas of study and explores promising trends in further research and development. SPD processing provides strong grain refinement at the nanoscale and produces very high dislocation and point defect densities as well as unusual phase transformations associated with particle dissolution, precipitation, or amorphization. Such SPD-induced nanostructural features strongly influence deformation and transport mechanisms and can substantially enhance the performance of advanced materials. Exploiting this knowledge, we discuss the concept of nanostructural design of metals and alloys for multifunctional properties such as high strength and electrical conductivity, superplasticity, increased radiation, and corrosion tolerance. Special emphasis is placed on advanced metallic biomaterials that promote innovative applications in medicine.
1. INTRODUCTION

Processing by severe plastic deformation (SPD) is one of the most efficient means for fabricating bulk ultrafine-grained (UFG) metals and alloys. Pioneering research in this area has been conducted for over 25 years (1, 2). Figure 1 illustrates the recent growth in research activity on SPD (3). Most trends in SPD research are thoroughly described in several recently published review articles and books covering different aspects of nanostructured materials from SPD processing, such as simulation and development of SPD techniques (1, 4–7); grain refinement and its mechanisms in various materials, such as pure metals, model and commercial alloys (2, 3, 6, 8–10), intermetallic compounds, and some ceramics and polymers (10–12); and fundamentals of superior properties and the innovative potential of nanostructured materials processed by SPD (1, 2, 12–17).

Recent studies demonstrated that SPD processing allows the introduction of effective grain refinement as well as nontypical phase transformations (3, 14). These processes result in the formation of peculiar, nonequilibrium structural features at the nanoscale, such as high dislocation densities located mainly at grain boundaries (GBs) (1, 18), nanotwins (13), solid solution decomposition in alloys leading to the formation of nanoprecipitates (14, 16), and the redistribution of alloying elements segregating at GB areas (8, 18). Especially remarkable is the unusual combination of SPD-induced diffusive and displacive (martensitic) phase transformations (19, 20).

These SPD-induced nanostructural features influence deformation mechanisms in SPD materials and lead to substantial enhancement of their performance to a degree that cannot be attained by conventional processing. Exploiting this knowledge opens a new way of formulating the concept of nanostructural design by SPD processing and for evolving superior multifunctional properties in UFG materials.

The past decade has been marked by significant progress in developing and optimizing SPD processing techniques to achieve superior properties. These developments are associated either with modifications of the conventional SPD techniques to promote their commercialization (such as an improvement in the efficiency of processing techniques and a reduction of material wastage) (4, 7, 21, 22) or with the optimization of SPD regimes and the development of complex SPD

![Figure 1](image_url)

Figure 1

Numbers of papers published on research in severe plastic deformation and high-pressure torsion. Data were collected from Scopus on April 23, 2020, and the papers were counted from those published in peer-reviewed journals, including proceeding papers screened by reviewing processes. Figure adapted from Reference 3.
processing routes when two or more SPD processing techniques are combined (23, 24). Complex SPD processing routes applied to metallic materials provide further microstructural refinement and therefore higher reductions in grain size, resulting in drastic improvements in performance. A combination of several processing techniques provides an extra tool for texture design in UFG metallic materials to further control the anisotropy of microstructure and the resulting properties.

The present article provides a critical review of the latest achievements in advanced SPD processing, focusing on developments that have not received appropriate attention in earlier reviews. Historical developments and a short overview of the most popular (classical) SPD processing techniques are presented briefly in the beginning of Section 2. Modified SPD processing techniques and regimes are described in Section 2.1, followed by a presentation of complex SPD processing routes applied for nanostructuring of various metals and alloys in Section 2.2. Microstructural features of UFG materials produced by advanced SPD processing, as well as the main principles of nanostructural design via SPD to achieve superior mechanical and functional properties, are presented and discussed in Sections 3 and 4. The existing and potential applications of UFG metals via advanced SPD processing are outlined and discussed in Section 4.

2. RECENT TRENDS IN THE DEVELOPMENT OF SPD TECHNIQUES

The processing of nanomaterials by SPD techniques has become a popular topic in research laboratories around the world. From a historical point of view, SPD processing is relatively young, but its basic idea goes back to the work of ancient artisans who used a repetitive forging and folding technique (2). This process was first developed for steel manufacturing in China for use in swords about 2,000 years ago. The processing approach was also employed for manufacturing Wootz steel in Japan and later in India. This processing concept then spread further to the Middle East, where the famous Damascus steel was developed. Impressively, all these processing techniques were developed without metallurgical knowledge and without any fundamental understanding of the basis for the processing procedures.

Edalati & Horita (25) recently carried out a detailed analysis of research activities related to SPD from 1935 to 1988. In 1935, Prof. P.W. Bridgman of Harvard University (26) introduced a die set for compression and torsion straining and conducted the first studies of the effects of high hydrostatic pressure combined with high shear stress on phase transformations in minerals and metals. The principles of Bridgman's fundamental work were further extended using die sets combining shear (torsion) and compression straining to introduce high shear strain without changing the sample shape. Such experimental die sets were developed in the 1980s by Polish and British scientists and by Russian scientists from Yekaterinburg (formerly Sverdlovsk, USSR) (see 25). Very large strains, with true strains exceeding 6–8, were achieved using these facilities, leading to significant microstructural refinement in several metals.

The year 1988 included another milestone. A pioneering study on SPD processing was performed in Ufa (27), resulting in the production of metals and alloys with submicrometer grain sizes and high-angle GBs that showed outstanding superplastic properties. This was further studied in the works of Valiev and colleagues (28) using a combination of torsion and compression, later termed high-pressure torsion (HPT), with the Bridgman type of die set. A short time later, this research was extended to equal-channel angular pressing (ECAP) (29). The results of these early studies are summarized in Reference 1.

HPT and ECAP have become the most popular SPD processing techniques, although these processes are being continuously modified, as described below. Furthermore, several other SPD processing techniques are now also available, including accumulative roll bonding (ARB), twist extrusion, and multiaxis forging. Several recent reviews and books (7, 24, 30, 31) focus on the
different SPD techniques and provide detailed information about their main principles and recent developments.

However, these SPD techniques have been used primarily for laboratory-scale research. The requirement for economically feasible production of UFG metals and alloys raises several new problems in the development of SPD processing. The key challenges are to reduce material waste, obtain a uniform UFG structure and enhanced properties in bulk billets and products, and increase productivity. Strategies for solving these problems are examined in the following section.

2.1. Continuous SPD Processing Techniques

To increase the efficiency of SPD techniques, continuity is the key to obtaining long-sized products and ensuring high processing efficiency. Over the past decade, this challenge has been successfully completed for both SPD techniques: ECAP and HPT.

2.1.1. Continuous equal-channel angular pressing. The conventional ECAP process is very labor intensive, since it requires significant manual effort related to inserting and removing the relatively short billets (typically having lengths of approximately 100–200 mm) from conventional dies. Therefore, the conventional ECAP technique was modified into continuous forms that can be used for efficient production of material in relatively large volumes with lower waste (4). Early research focused on the development of continuous ECAP procedures combined with a rolling mill or drawing, with the aim of processing long metal strips and rods (see 7). However, further modification of these techniques was required for processing materials with UFG structures.

Rosochowski & Olejnik (32) proposed another modification of the ECAP technique for processing of long samples. This incremental ECAP (I-ECAP) is a cyclical process in which the billet is delivered into the deformation zone, where a small volume of material is deformed by simple shear in each cycle by a reciprocating punch. This technique was further modified into a double-billet I-ECAP process (33).

Continuous pressing was first proposed by Segal et al. (34) as a continuous simple shear process of long rods based on the famous Conform process. The ECAP with a Conform (ECAP-C) procedure was first developed and used for grain refinement in commercially pure aluminum down to 650 nm (35). Today, this technique is termed the ECAP-C process (Figure 2), and it has been used in laboratories around the world (4, 22, 23, 36–38).

![Figure 2](image)

(a) A schematic illustration of an equal-channel angular pressing–Conform (ECAP-C) device and (b) Al billets after six ECAP-C passes. Panel a adapted with permission from Reference 35. Panel b adapted with permission from Reference 39.
Similar to what occurs with the conventional ECAP technique, ECAP-C samples may be subjected to various processing routes and regimes, as described in detail in Reference 4. Computer modeling of ECAP-C is widely applied for selection of load-bearing elements and materials (23, 39). ECAP-C can be applied not only to easily deformable materials, such as commercially pure Al, but also to various alloys, commercially pure Ti, and steels (22, 23, 38, 39).

A combination of ECAP-C with other deformation processing techniques (such as drawing and rolling) can achieve superior mechanical and functional properties in metallic materials, and this topic is considered in detail in Section 5. The ECAP-C process can be used to process metallic rods with UFG microstructure, yielding much higher mechanical and functional properties than conventional coarse-grained counterparts.

2.1.2. Continuous and modified high-pressure torsion techniques. The HPT process is another very popular SPD technique, although it has three main limitations (5, 21):

1. Small disks produced by HPT are not suitable for most industrial applications;
2. The high degree of applied pressure that must be maintained through straining introduces a limit on the installation construction; and
3. An inhomogeneous degree of strain is induced across the diameters of the disks, resulting in microstructural and property gradients.

A modified HPT technique for the processing of rings introduced by Harai et al. (40) helps to overcome some of these limitations. The replacement of a disk by a ring permits not only the avoidance of the less-processed central part of the disk but also a further scaling-up of the HPT technique to 100 mm in diameter (41). The sample shape can be improved by high-pressure sliding (HPS), which is another attempt that was developed for fabrication of sheet metallic materials that are 100 mm long, 5 mm wide, and 0.8 mm thick (42).

The HPS technique is shown in Figure 3. Rectangular sheets can be processed using HPS, and the process may be scaled up once an equal strain is introduced throughout the sample under the same load.

Continuous HPT (CHPT), developed with the aim of microstructural refinement and subsequent enhancement of properties, was the next step in the improvement of HPT (43). CHPT was successfully applied for manufacturing of 2-mm-diameter UFG wires from pure Al and Cu.

A new incremental HPT technique was also proposed recently (44). This technique offers new possibilities for processing UFG metallic materials and appears attractive from the viewpoint of

![Figure 3](https://example.com/figure3.png)

Illustration of high-pressure sliding. (a) Assembly of two anvils with guiding pins, one plunger, and two thin sheet samples. (b) Cross-sectional view of assembly. Figure adapted with permission from Reference 42.
industrial applications, as it allows HPT processing of cylinders instead of disks. The method is worthy of further development, as are investigations of its effect on the microstructure and properties of various materials.

2.2. Complex SPD Processing Routes

Processing by combinations of several deformation processing techniques, including at least one SPD technique, is often referred to as complex SPD processing routes. For example, two-step SPD processing, such as ECAP followed by HPT, was reported to induce additional refinement in the grain size and a consequent increase in mechanical strength and ductility (45). In the section below, the main features of complex SPD processing are considered, as is its influence on the microstructure and properties of numerous metals and alloys.

2.2.1. Combinations of two and more SPD techniques. Different combinations of SPD techniques used for processing of metallic materials can be found in the literature [e.g., ECAP and HPT (5, 46–48), ECAP and hydrostatic extrusion (49), and ECAP and ARB (50), all applied to various metallic materials]. Typically, a combination of SPD processing techniques leads to microstructures that are quite different from those obtained if the material is processed by an individual SPD technique. This includes extreme grain refinement; variations in morphology, size, and fractions of second-phase precipitates; dislocation structure and density; crystallographic texture and microtexture; and GB misorientations.

Grain refinement and further nanostructural modification in metallic materials processed using complex SPD routes generally result in improved mechanical properties (47, 49). However, the microstructure evolution during processing using combined SPD techniques also depends on the processing regimes (i.e., homologous temperature and strain) and chemical composition of the material (i.e., its thermal stability). This was clearly seen for pure Ti processed by ECAP and then subjected to HPT at 450°C and at room temperature (45). The latter processing resulted in a much finer grain size and higher mechanical strength.

A combination of SPD techniques was also used for grain refinement in a commercial ZK60 magnesium alloy to improve its functional properties. In a recent report (50), the hydrogen storage properties of this alloy were investigated after ECAP processing for 6 passes and ARB processing for 25 passes. The average grain size was approximately 0.8 μm after ECAP and was further reduced to around 0.3 μm after ARB processing. The latter also resulted in the formation of basal texture with (002) planes parallel to the rolling surface. The hydrogen absorption and desorption kinetics were also measured. Processing only by ECAP resulted in a very low hydrogen storage capacity of 0.5 weight percent (wt. %). Additional processing by ARB refined the microstructure and improved the hydrogen absorption. The sample from the ECAP material absorbed 4.77 wt. % of hydrogen in 24 h, whereas the capacity of the sample processed by ECAP and ARB was 6.4 wt. %. The enhanced kinetics of hydrogen absorption and desorption in the alloy after additional ARB processing were related to the finer grain size, since hydrogen diffusion is generally faster along GBs and the GBs and GB triple junctions can act as nucleation sites for the hydride phase.

2.2.2. SPD processing with traditional metal-forming techniques. After simple SPD processing, samples can also be subjected to deformation by a conventional metal-forming technique (such as rolling, drawing, or extrusion) or by a combination of techniques. This may be conducted to change the shape of the sample, to further modify the microstructure and properties, or both. For example, the application of rolling allows the fabrication of UFG sheets from SPD-processed billets or rods. Several combinations of SPD techniques with deformation processing methods are reported in the literature. For example, ECAP was combined with rolling at various temperatures.
Figure 4

Electron back-scattering diffraction (EBSD) orientation maps of Cu after equal-channel angular pressing (ECAP) (a–d) and ECAP with subsequent rolling (e–h) for one pass (a,e), two passes (b,f), four passes (c,g), or ten passes (d,h). Low-angle boundaries ($2^\circ \leq \theta < 15^\circ$) and high-angle boundaries ($\theta \geq 15^\circ$) are shown on EBSD maps using white and black lines, respectively. Abbreviations: ED, extrusion direction; ND, normal direction; RD, rolling direction; TD, transverse direction. Figure adapted with permission from Reference 56.

The microstructure and mechanical properties of commercially pure Cu after 1–10 ECAP passes using route B$_C$ were compared with those of samples further cold rolled to a total reduction ratio of 90% (56). Cold rolling caused a transformation of the relatively equiaxed UFG structure developed in Cu during ECAP processing into a lamellar structure with even finer boundary spacing (Figure 4). For example, a boundary spacing approaching 180 nm after 10 ECAP passes decreased to approximately 110 nm after rolling (Figure 4g,h). A negligible grain refinement in terms of the formation of new boundaries takes place during rolling of ECAP-processed Cu. Cold rolling after ECAP with a corresponding number of passes also led to a significant increase (about 20%) in the average fraction of high-angle GBs.

The metal-forming parameters of cold rolling after ECAP also significantly affect the microstructure, texture, and mechanical properties of SPD-processed material. This was clearly demonstrated for commercially pure Ti (57, 58) subjected to a two-step process consisting of ECAP (at 300°C) and cold rolling with a reduction ratio of 70–76% (at room temperature or at liquid nitrogen temperature). Such processing served to activate two strengthening mechanisms in the pure metal: GB strengthening due to the grain size reduction from the ECAP processing...
and dislocation strengthening from deformation by rolling. A reduction of rolling temperature from 20°C to cryogenic temperature improved the yield strength of the two-step processed pure Ti (ECAP for six passes followed by rolling) from about 785 MPa to about 915 MPa due to an increased dislocation density in the cryorolled material (57).

Clear advantages of combining ECAP with further thermomechanical treatment have been demonstrated in the development of Ti-based materials for biomedical applications (23, 59), including shaping semiproducts in the form of sheets or rods and enhancement of properties introduced by ECAP in UFG materials (see also Section 4.3 on nanostructured metallic biomaterials).

The development of complex SPD processing routes for fabrication of UFG materials is usually based on numerous experimental trials and is a very time-consuming and expensive process requiring a significant amount of material and a precise analysis of microstructure, thermal stability, and mechanical properties. Thermomechanical simulation of the metal-forming processes helps to minimize the amount of expensive SPD-processed material needed for such experimental work, increases the efficiency of the work, and thus reduces the cost (23, 60). The results may be used directly in the laboratory as well as in full-scale production.

A physical simulation of hot rolling of ECAP-processed UFG pure Ti was carried out (60) using 20 × 15 × 5 mm³ samples to predict microstructure and texture evolution, as well as the microhardness, during hot rolling. It was demonstrated that hot rolling leads to a breakup of the ECAP-type crystallographic texture, a further refinement of grain size, and an improvement in microhardness with increasing total reduction ratio.

Recently, a modified method called HPT extrusion (HPTE) was proposed (61). This technique combines HPT and cyclic extrusion. HPTE used for processing bulk nanostructured materials in quantities suitable for industrial applications has several advantages: simple shear conditions, high hydrostatic pressure in a rod-shaped specimen, and the accumulation of a large strain in a single pass. Furthermore, hybrid materials with helical architecture, gradient materials, and such can be produced in a rather simple way using this newly developed process.

3. NANOSTRUCTURAL ARCHITECTURE OF SPD-PROCESSED MATERIALS

Studies performed during the past decade, using techniques including 3D atom probe tomography (APT), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray diffraction, revealed that SPD processing not only can form ultrafine grains but also may be used to engineer GB structures and generate nanoparticles, segregation, or nanoclusters and other structural elements at the nanoscale. The nature of these phenomena is related to the fact that, together with grain refinement, processing by SPD may also lead to unusual phase transformations as a dissolution of second phases, precipitation, amorphization, allotropic phase transformations, and other nanostructural features (see, for example, 12, 14, 16, 18). Also, the unusual combinations of SPD-induced diffusive and displacive (martensitic) phase transformations (i.e., transitions with or without mass transfer) can take place during SPD (19, 20, 62). By contrast, the type and morphology of such nanostructural elements, as well as their number density, control deformation and transport mechanisms responsible for improvements in the mechanical, chemical, and physical properties of bulk nanostructured materials through SPD techniques and the optimization of processing regimes. Nanostructuring via SPD processing is considered in this section.

3.1. Grain Boundaries in Nanostructured Materials

The density of GBs and interphase boundaries in UFG materials with submicron (100–1,000 nm) or nanocrystalline (<100 nm) sizes is very high and can significantly impact properties. UFG materials can thus be considered as interface-controlled materials (63, 64).
Gleiter (64) suggested that the atomic structure of GBs in UFG materials may be characterized by several special features, in contrast to GBs in conventional polycrystalline materials. This is especially important for materials in which UFG microstructures are produced by SPD techniques (1, 12, 18).

Although the physical mechanisms of microstructure evolution during SPD processing call for further investigation, numerous studies demonstrate that the formation of a UFG structure is determined by the evolution of cells or dislocation substructures formed in the early deformation stages into ultrafine grains with high-angle boundaries during subsequent deformation. At the same time, and depending on the regimes of SPD processing, different types of GBs can be formed in the UFG materials, such as high and low angle, special and random, and equilibrium and so-called nonequilibrium GBs with strain-distorted structures containing extrinsic dislocations, as well as boundaries with GB segregation of alloying elements (16, 18).

As discussed in Section 2, the fabrication of UFG metals and alloys with predominantly high-angle GBs by SPD techniques was first revealed by Valiev et al. (1) and colleagues (2, 25). In the past decade, active development and application of electron back-scattering diffraction (EBSD) have provided quantitative data on the low- to high-angle GB ratio and the presence of special and random boundaries in various metals and alloys subjected to SPD. For example, EBSD analysis has been used to plot misorientation histograms (65). A Mackenzie plot has been added to each histogram for an ECAP-processed Al 6016 alloy. The boundary misorientation angle histogram in Figure 5 shows that after the first ECAP pass, the microstructure is characterized by approximately 93% of the boundaries with misorientation angles <15° (i.e., low-angle boundaries).

Figure 5
Relative frequency of dislocation cell or subgrain boundaries as a function of misorientation angle for Al 6016 samples processed by equal-channel angular pressing. (a) One pass, (b) two passes, (c) four passes, and (d) eight passes with a Mackenzie plot (i.e., the distribution of misorientation angles for a randomly textured polycrystal) superimposed on each histogram. Figure adapted with permission from Reference 71.
After the second pass (Figure 5b), the average dislocation cell size is reduced considerably, but the inhomogeneous structure remains characteristic for most cells orientated parallel with the Y (or transverse) direction. Simultaneously, the boundary misorientation distribution shifts upward, with about 67% of boundaries comprising misorientation angles <15°. After four ECAP passes, some equiaxed dislocation cells or subgrains appear together with some shape irregularities and alignment of the microstructure off-axis to the Y (or transverse) direction. The distribution histogram with approximately 34% of boundaries having a misorientation of <15° reflects a more gradual upward shift in the corresponding misorientation angle (Figure 5c). Further processing to eight passes resulted in an evident reduction of the dislocation cell or subgrain size and upward shifts in the misorientation distributions (Figure 5d). A near-random distribution after 12 ECAP passes was observed (65).

The results of this work, as well as another recent study by EBSD analysis (66), provide convincing support for earlier conclusions that the formation of a UFG structure with mostly high-angle boundaries takes place during ECAP when the number of passes is greater than four to six (true strain is greater than four to six). Such very large strains cannot be achieved using conventional processing techniques, such as rolling, extrusion, or drawing, and therefore their application provides no opportunity for the formation of a real UFG microstructure with mostly high-angle GBs. Moreover, SPD techniques involve simple shear, which makes it possible to form the ultra-fine grains as equiaxial or at least close to it in shape.

A variety of characterization methods—including high-resolution TEM (HRTEM), X-ray diffraction, Mössbauer spectroscopy, dilatometry, and differential calorimetry (see, for example, 1, 10, 16)—were used in different studies to investigate features of GBs in UFG materials produced by SPD techniques. These studies clearly demonstrated that optimization of the SPD processing regimes results in the formation of mostly high-angle GBs with specific nonequilibrium structures. The application of GB diffusion measurements (67–69) and HRTEM analyses (18, 70, 71) helped identify and characterize the effect of the severe deformation processing on transformations of the GB structures. For example, it was revealed that HPT may result in the formation of a very high density of dislocations, facets, and steps at GBs in the Al-3% Mg UFG alloy (72). Numerous reports confirm the appearance of such nonequilibrium GBs in different materials processed by SPD (1, 18, 69, 73).

The term nonequilibrium GBs has been accepted and is used by the entire SPD materials science community. It is also used here to describe GBs that are defined formally as boundaries with strain-distorted structures and high densities of extrinsic dislocations (1, 18).

Thus, recent studies of the GB structure in SPD-processed UFG materials suggest that specific nonequilibrium GBs with strain-distorted structures associated with a correspondingly large residual microstrain are a typical feature in these nanomaterials.

3.2. Nanotwins in Metallic Nanomaterials

Decreasing grain size usually impedes twinning in coarse-grained, face-centered-cubic metals. In nanocrystalline metals, twinning becomes easier with decreasing grain size up to a certain grain size, reaching a maximum twinning probability, and then twinning becomes more difficult when the grain size decreases even further (74). The difference between twinning mechanisms in nanocrystalline and coarse-grained materials has been revealed by molecular dynamics simulations and experimental observations.

The formation of nanotwins can be promoted if certain properties intrinsic to the material and external deformation conditions are satisfied, including a relatively low stacking fault energy, a low deformation temperature, and a high strain rate (74). A range of grain sizes is apparently optimal for deformation twinning for different materials and testing conditions. In particular,
lower temperatures, additional cold rolling, extrusion, and drawing can all promote the formation of nanotwins. Figure 6 shows an HRTEM image of UFG Cu after ECAP and cold rolling at liquid nitrogen temperature. In it, 10–20-nm twins can be clearly observed (75). Enhanced strength and ductility can also be obtained in nanocrystalline materials due to deformation twinning (75, 76).

Twin GBs (even in nanotwins) typically contain high-energy facets in addition to the main low-energy $\Sigma 3$ \{111\} //\{111\} facet (Σ is the reverse bulk density of the coincidence sites). The observation of such high-energy facets in materials after SPD is evidence of nonequilibrium GBs processed by SPD (77).

3.3. Segregation in SPD-Processed Nanostructured Alloys

Several investigations of thermal stability as a function of the impurity level in metals have supplied indirect evidence of GB segregation in UFG materials. However, GB segregation has recently been observed in UFG materials processed by SPD directly (18, 73, 78–80). APT is the main technique used for atomic-scale characterization in most of these reports. Crystallographic information provided by this technique is very limited, and the GB misorientation usually cannot be determined. Moreover, there is almost no possibility of statistical analysis because of the very small GB areas that are analyzed. Nevertheless, the demonstration of GB segregation in various SPD-processed metallic materials confirms that this is not a marginal feature.

SPD processing resulted in the formation in a UFG AA6061 alloy with a microstructure characterized by Mg, Cu, and Si segregation along planar defects attributed to GB (78). The thickness of the layer enriched by solute elements was about 2 nm. The local enrichment was <2 atomic percent (at. %). Segregation at GB was also observed in several Al alloys processed by both ECAP and HPT (79, 80). The achievement of a mean grain size of about 100 nm and a large fraction of high-angle GBs after 20 turns of HPT processing was reported in AA7075. The data in Figure 7 (81) show that clusters approximately 3–5 nm wide are made of GB segregants. Local concentrations up to 25 at. % of Mg in layers of approximately 6–8 nm thick were also observed.
3.4. Nanoparticles and Second-Phase Precipitates

Solution quenching promotes the formation of particles in many alloys subjected to SPD (see, e.g., 17, 83, 84). Examples of such nanoparticles as large as about 10–20 nm precipitated in the UFG Al alloys after ECAP processing are presented in these studies. Nanoparticles appeared due to dynamic aging and caused additional precipitation hardening of the alloys. Parameters of SPD processing usually determine the size and morphology of precipitates. In recent years, the subject of dynamic aging originating from SPD has attracted greater attention because the morphology of precipitates and their formation kinetics differ considerably from the processes of conventional aging and provide for new possibilities in the production of advanced alloys that can be hardened with age (85, 86).

It was recently observed that dynamic aging during HPT competes with dynamic dissolution of precipitates in Cu-based alloys (87). As a result of this competition, a certain steady state forms between dynamic aging and dynamic dissolution (88). This is controlled by an accelerated diffusion–like mass transfer between matrix solid solution and precipitates. As a result of this dynamic equilibrium, a certain steady-state solute concentration is established.

4. NANOSTRUCTURAL DESIGN OF ULTRAFINE-GRAINED MATERIALS THROUGH SPD PROCESSING

As shown in Section 3, unique structural characteristics result from nanostructuring of bulk materials by SPD. Among them are ultrafine grain sizes and shapes; high density of interfaces and lattice defects in the grain interior; and complex structure of GBs, nanotwins, segregation, and second-phase nanoparticles. These nanostructural features can strongly influence transport
and deformation mechanisms, thereby changing the properties of not only metallic materials but also some polymers and ceramics (3, 12, 13).

Deformation mechanisms in nanometals are significantly influenced by GBs, which constitute a large volume fraction in UFG metals. In general, GB-mediated deformation mechanisms can be divided into two basic categories: (a) pure GB mechanisms related to GB sliding and migration and (b) GB-mediated mechanisms associated with twinning and dislocation emission from GBs (12, 13, 69). The pure GB mechanisms include GB sliding, stress-driven GB migration, grain rotations mediated by GB dislocations, and GB and triple-junction diffusional creep. These mechanisms can significantly contribute to plastic deformation in metallic nanograined materials. Both deformation mechanisms depend on the crystallography of GBs and their defect structure related to the presence of GB dislocations and vacancies. In turn, as discussed in Section 3, the GB structure is determined by SPD processing conditions and regimes.

Computer simulation (89) and experimental studies (90, 91) have substantiated the recent discovery of the influence of GB segregation on GB sliding and diffusion in aluminum alloys. Zn segregation at GBs significantly accelerates the diffusion kinetics and sliding, while Mg segregation inhibits this process. This opens the way to control the mechanical properties of nanomaterials and their thermal stability through GB engineering (16, 70, 73, 91).

We now consider some examples of nanostructural design of metals and alloys for enhancement of their mechanical and functional properties. These problems refer specifically to simultaneously improving properties of multifunctional materials that are usually mutually exclusive (12, 17).

4.1. Superior Strength and Ductility

Earlier work on SPD processing (1, 2) focused mainly on grain refinement to improve the mechanical strength of metallic materials according to the well-known Hall–Petch relationship,

\[
\sigma_y = \sigma_0 + K_{\text{HP}}d^{-\frac{1}{2}},
\]

where \(\sigma_y\) is the yield stress, \(d\) is the grain size, and \(\sigma_0\) and \(K_{\text{HP}}\) are constants for a given material. Later, it was revealed that this relationship may break down for nanomaterials with a grain size of <20–50 nm (13). Nevertheless, the Hall–Petch law is usually valid for UFG materials produced by SPD, as they generally have grain sizes in the submicrometer range. The mechanical strength of pure metals can be enhanced by a factor of about 3–6 due to extreme grain refinement via SPD (92, 93). However, as noted above, the SPD-processed materials often have various nanoscale features that provide additional strengthening. The contribution of other strengthening mechanisms (e.g., dislocation hardening, precipitation hardening) can further enhance mechanical strength, resulting in values that are much higher than those predicted by the standard Hall–Petch relationship (92, 94). Such observations of superstrength have been demonstrated for several Al alloys (such as Al 1570 and Al 7475), Ti-6Al-4V, and steels and have already been considered in detail in the literature (12, 92).

GB segregation can provide additional strengthening. Experimental studies of a high-strength UFG Al 1570 alloy, using an APT technique, demonstrated a clear relationship between Mg segregation at GBs and strength (80). Similar observations were also recently reported for several UFG Al alloys and stainless steels (79, 95, 96). A physical explanation for such segregation strengthening is related to dislocations generated at GBs (80). The emitted dislocation glides through the grain interior and is trapped by the opposite GB so that a dislocation–GB interaction plays the role of the rate-controlling mechanism. GB segregation can suppress the emission of dislocations due to a solute drag effect that, in turn, results in higher values of stress required for the dislocation emission. Thus, a new strengthening mechanism related to GB segregation can be observed...
Ductility is required to enable metal-forming operations as well as to avoid catastrophic failure during service. The maximum strain of homogeneous plastic flow before the onset of necking represents the uniform elongation, which is determined by the resistance of the material to macrolocalization of plastic flow (13, 93). This parameter can be useful for determining the ability of material to undergo stretch metal-forming operations. Another parameter determining ductility is the elongation to failure. This parameter takes into account the necking elongation, which is controlled by a competition between localized plastic flow and fracture. Typically, the total elongation of coarse-grained materials is slightly higher than their uniform elongation. For UFG metallic materials, the difference between these two parameters may become very significant. Thus, it is important when analyzing the ductility of UFG metals to unambiguously indicate the precise measure of ductility.

Strength and ductility are the key mechanical properties of any material, but these properties are typically mutually exclusive, such that materials may be strong or ductile but are rarely both. Earlier works focusing on mechanical properties of SPD-processed materials demonstrated that grain refinement down to the nanoscale leads to very high mechanical strength but that these materials invariably exhibit low tensile ductility (98, 99). This problem was well known in metals subjected to heavy straining by processes such as rolling, extrusion, or drawing. The reason for this is that the plastic deformation mechanisms associated with the generation and storage of dislocations may not be active in heavily deformed materials during their further tensile straining. Such a situation is typical for SPD-processed materials as well.

Due to the significance of the problem of mechanical behavior of nanomaterials, the so-called paradox of strength and ductility was introduced in the literature (100, 101). Early reports on combinations of extraordinary strength and ductility in some bulk SPD-processed materials

Figure 8

Expansion of a dislocation loop in the presence of segregation. The blue and red ovals denote the segregations that hinder and promote loop expansion, respectively. (a, b) The ends (A and B) of the dislocation loop, which nucleates and expands under the action of the applied load, are pinned by segregation. (a) Projection on the dislocation glide plane illustrates segregation-induced pinning. (b) Projection on the grain boundary plane illustrates the fact that segregation can either promote or hinder dislocation loop expansion, depending on whether pinning is strong or weak. (c) By increasing the applied load, dislocation loop expansion is realized via its bow-out if segregation-induced pinning is strong. (d) If pinning is weak, loop expansion is realized via the unpinning and lateral motion of points A and B. Figure adapted with permission from Reference 97.
attracted significant attention from the research community, promoting investigations on the
development of novel approaches to improve tensile ductility of bulk nanostructured materi-
als. Recent overviews of these research activities are now available (13, 92, 102, 103). Various
strategies to improve the low tensile ductility of nanostructured metals and alloys have been
proposed. These approaches can be classified into two separate groups: mechanical strategies and
microstructural strategies. The mechanical strategies are based on manipulating some mechanical
characteristics of the UFG materials, such as strain rate sensitivity, work hardening ability, or
both, which can be controlled via testing parameters (temperature, strain rate, or both). The
microstructural strategies are based on the concept of microstructural design at the nanoscale.

Among the strategies for ductility enhancement in UFG metals (see, for example, 13, 102)
are the development of bimodal microstructures consisting of micro- and nanograins, developing
graded nanograined metals or nanotwinned structures, and tailoring of the stacking fault energy
via alloying. These strategies focus on increasing the strain hardening rate, which leads to im-
proved uniform elongation during tensile tests. By contrast, several recent GB engineering strategies
are intended to increase the strain rate sensitivity by accelerating GB sliding, significantly
enhancing the ductility (total elongation). For example, the presence of Zn segregation at GBs in
Al alloys with UFG structure sharply accelerates sliding, which leads to a considerable increase in
ductility and even superplasticity at room temperature (90). At the same time, by managing the
defformation conditions (e.g., temperature, strain rate), it is possible to successfully combine high
strength and ductility.

4.2. High Strength and Electrical Conductivity

A new strategy for nanostructural design in Al and Cu alloys for advanced conductors was re-
cently developed (85, 104, 105). In this strategy, the strengthening mechanisms and mechanisms
of electrical resistivity are manipulated by grain refinement (down to the submicrometer scale)
and dynamic aging during SPD processing. This results in decomposition of the supersaturated
solid solution and the formation of second-phase nanoprecipitates in alloys with UFG structure
(Figure 9). Boundary strengthening and precipitation hardening resulting in superior mechanical
strength are characteristic of these UFG microstructures with second-phase nanoprecipitates. At
the same time, significantly enhanced electrical conductivity results from the very low content of

![Figure 9](image)

Figure 9
Schematic illustration of nanostructure with nanoparticles to realize the combination of high strength, good
electrical conductivity, and enhanced thermal stability in Cu and Al alloys (85). Black arrows indicate average
ultrafine grains ($D < 500$ nm) (hexagons) and black lines indicate nanosized particles of different diameters.
Figure adapted from permission from Reference 104.
solute atoms and the absence of Guinier–Preston zones in the Al matrix. Theoretical evaluations (105) and experimental studies (85, 104) confirm this approach.

The dependence is well described by the ratio for strength (Equation 2) and electrical resistance (Equation 3) that were applied to assess the properties of UFG alloys in References 85, 104, and 105:

\[
\sigma_{\text{total}} = \sigma_o + \sigma_{gs} + \sigma_{ss} + \sigma_{\text{dis}} + \sigma_p, \tag{2}
\]

where \(\sigma_o\) is Peierls stress, \(\sigma_{gs}\) is grain size strengthening, \(\sigma_{ss}\) is solid solution strengthening, \(\sigma_{\text{dis}}\) is dislocation strengthening, and \(\sigma_p\) is precipitation strengthening.

The effective resistivity of an alloy, \(\rho\), following Matthiessen’s rule, is normally written as

\[
\rho = \rho_T + \rho_D, \tag{3}
\]

where \(\rho_T\) is a temperature-dependent phonon contribution and \(\rho_D\) is a contribution from the lattice defects and solutes and is independent of temperature. The temperature-independent part describes resistivity from various defects and thus can be split up into several contributions as

\[
\rho_{\text{total}} = \rho_{ss} + \rho_p + \rho_{\text{dis}} + \rho_v + \rho_{gb}, \tag{4}
\]

where \(\rho_{ss}\) is the resistivity due to scattering by solute atoms dissolved in the matrix; \(\rho_p\) is the resistivity added by second-phase particles; \(\rho_{\text{dis}}\) and \(\rho_v\) are resistivity due to dislocations and vacancies, respectively; and \(\rho_{gb}\) is the resistivity due to scattering on GBs.

For example, AA6201, an alloy widely used for electroconductors, was chosen for experimental confirmation (85). Disks with diameters of 20 mm and thicknesses of 1.5 mm were solution heat treated at 530°C for 2 h and water quenched. Then, HPT was used for SPD processing of the disks. A strong decomposition of the supersaturated solid solution, confirmed by a significant decrease in the lattice parameter of the Al matrix, was revealed by X-ray diffraction. A good match of the X-ray results with recent APT was revealed (105). Dynamic aging leads to a near-complete purification of the matrix from the solute atoms and formation of 10- to 30-nm spherical nanoprecipitates. The strength and electrical conductivity calculations based on the obtained structural data are in good agreement with the experimental values (105).

4.3. Metallic Biomaterials with Superior Strength and Functionality

Nanostructuring of biocompatible metallic materials by SPD opens up new avenues for their applications in biomedical engineering (38, 106). The most impressive results in this area were achieved for commercially pure Ti. Ti is recognized as one of the most bioinert metals, which makes it attractive for producing medical implants (107, 108). Unlike many Ti alloys, it does not contain any toxic elements. In terms of biocorrosion resistance, Ti is superior to most surgical metals due to the formation of a very stable passive layer of TiO₂ on its surface. Another favorable property of Ti is its low elastic modulus (half that of stainless steel and Co–Cr alloys), which results in less stress shielding and associated bone resorption around Ti orthopedic and dental implants. Furthermore, Ti is lighter than other surgical metals and produces fewer artifacts during computed tomography and magnetic resonance imaging. However, the static and fatigue strengths of commercially pure Ti are too low for it to be used in some load-bearing medical applications. For example, small plates and screws are often used in the maxillofacial area of a skull (109). However, depending on the injury type and locality of bone fixation, loads on implants can vary from 200 to 700 N. The maximum load for a 1-mm-diameter screw can create stresses as high as 900 MPa, which are significantly beyond the ultimate tensile strength (UTS) of commercially pure Ti and require using stronger Ti alloys or stainless steels.
Recent studies have shown that the application of SPD processing techniques such as ECAP-C with a subsequent drawing of the material is the most effective way to produce long-length rods with nanoscale structures (38, 110). Nanostructuring of Ti increases its strength and fatigue resistance to levels that exceed those reported for Ti-6Al-4V ELI alloy (110, 111). The UTS in Ti after ECAP plus drawing is almost twice the value in the initial state after hot rolling. The strength becomes even higher when the degree of straining during drawing is increased without any dramatic reduction of ductility. This is in contrast to conventional deformation processing, such as rolling, extrusion, or drawing, when increasing accumulated strain and microstructure refinement results in strengthening but a concomitant reduction in ductility. This is because these processing techniques result in a subgrain type of microstructure characterized by pronounced metallographic and crystallographic textures as well as high volumes of low-angle GBs. High strength with retained ductility allows the miniaturization of load-bearing implants made from the nanostructured Ti. Miniaturized Ti dental implants (112) and miniplates have been designed using these principles (113).

4.3.1. Nano-Ti dental implants. The reduced diameter of nano-Ti implants allows a reduction in damage during their insertion into the jaw, thus making implantation a less traumatic procedure for the patient. Another advantage is that these implants could be installed in patients with a thin alveolar bone, where conventional implants cannot be used or additional intervention is required (106, 112). The research to date has shown that implants from nano-Ti also have better biological response, including increased cell survival and enhanced cell adhesion (110, 111). Previously, it was found that the colonization of fibroblasts on the surface of grade 4 Ti increased significantly after nanostructuring and chemical etching (114). Observations of patients in a clinical setting have shown that increasing the biological properties of nano-Ti contributes to the rapid engraftment of the implant, and about 70% of nano-Ti implants could be loaded immediately after inserting. So far, over 7,000 dental implants made from nanostructured grade 4 Ti with diameters of 2.4 and 3.5 mm, as well as several implants with a diameter of 2.0 mm, have been inserted in several clinics in the Czech Republic (Figure 10). To date, not a single case of rupture or breakage of nano-Ti implants has been reported. The calculations and experimental results show that using available nanostructured Ti with an UTS of 1,330 MPa makes it possible to securely reduce the diameter of the implant down to 2.0 mm (Figure 10a). This enables nano-Ti implants even in the case of alveolar bones narrower than 4.5 mm.

Figure 10
A 2.0-mm-diameter Nanoimplant® (http://www.timplant.cz/en/) from nanostructured grade 4 Ti in (a) a panoramic X-ray radiograph after surgery and (b) the control radiograph obtained after incorporation of the implant. (c) Image of a miniplate with six holes made from nanostructured grade 4 Ti (110). Panels a and b reproduced from Reference 115. Panel c reproduced from Reference 116.
Table 1 Mechanical properties of conventionally processed and nanostructured grade 4 Ti produced by ECAP-C and drawing

<table>
<thead>
<tr>
<th>Processing and treatment conditions</th>
<th>UTS (MPa)</th>
<th>YS (MPa)</th>
<th>Elongation (%)</th>
<th>Reduction of area (%)</th>
<th>Fatigue strength at 10^7 cycles (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Ti (as received)</td>
<td>700</td>
<td>530</td>
<td>25</td>
<td>52</td>
<td>340</td>
</tr>
<tr>
<td>Nano–grade 4</td>
<td>1,330</td>
<td>1,267</td>
<td>11</td>
<td>48</td>
<td>620</td>
</tr>
<tr>
<td>Conventional Ti-6Al-4V ELI⁴</td>
<td>940</td>
<td>840</td>
<td>16</td>
<td>45</td>
<td>530</td>
</tr>
</tbody>
</table>

Abbreviations: ECAP-C, equal-channel angular pressing–Conform; ELI, extra low interstitials; UTS, ultimate tensile strength; YS, yield stress.

⁴Data on Ti-6Al-4V ELI alloy are presented for comparison (110).

4.3.2. Nano–Ti plates for maxillofacial surgery. Using the fatigue endurance limit of conventional and nano–Ti (Table 1), it is possible to design nano–Ti plates with reduced thickness for maxillofacial surgery. Plate thickness can be reduced from 0.9 to 0.7 mm without degradation of its mechanical performance (113). While the standard plates withstood 17,000 ± 500 cycles, a nano–Ti plate with reduced cross section withstood 105,000 ± 800 cycles (113). This result points to an enhancement of bending strength of the plate from nano–grade 4 Ti despite its reduced thickness, an important advantage over the standard item made from conventional Ti.

4.3.3. Surface modification to improve biointegration. Surface properties are an important aspect of an implant design to ensure effective osseointegration. Pure Ti has very low bioactivity (i.e., it is bioinert) and does not bond directly to the human bone. As a result, the implant may shift and loosen during service life. A significant body of research has shown that grain refinement down to the nanoscale in commercially pure Ti can increase the adhesion and proliferation of various bone-forming cell types (114–121). Additional surface modification can further improve the bioactivity of implants made from UFG Ti, including chemical etching and deposition of bioactive coatings (108, 122–126).

HF-HNO₃–based solutions are used for acid treatment of the implant surface. HF acid interacts with the TiO₂ oxide film and results in the formation of a dense film of fluorides and hydrides. In recent work (126), a mixture of acid etchants was used to reveal the effect of topography of the nano–Ti surface. Nanostructured Ti was found to produce rougher surfaces after etching. Similar results have been reported by numerous researchers (127–129), demonstrating that the specific relief on the nano–Ti surface facilitates higher rates of adhesion for both fibroblast (129) and pre-osteoblast (127) cells.

Biocompatible coatings can facilitate integration of the Ti implants into human bone (130). Therefore, research into synthesis of biocompatible coatings integrating inorganic (e.g., Ca- and P-containing phases) and organic, biologically active components on Ti implants is quite relevant at present (131, 132), with recent results on bioactive coatings on nanostructured biometals (133–135).

5. BIODEGRADABLE METALS

Interest is growing in the application of biodegradable metallic materials for manufacturing of devices in the biomedical industry (136, 137). There are strict requirements on reliability, biodegradability, and biodegradability of materials used for the manufacturing of implants and stents. Nanostructured Mg and Fe can potentially satisfy all these requirements due to their biodegradability and biodegradability. High strength may be achieved by grain refinement, and corrosion performance can be controlled due to the second-phase particle distributions. The required Young’s modulus, the increased possibility of bone adaptation, and a controlled drug release option may be reached by micro- and macroporosity (137, 138).
The high potential of SPD-processed Mg alloys for applications as biodegradable materials was demonstrated in a recent study focused on their biocompatibility (139). Significantly improved mechanical strength and lower corrosion rates without degradation of biocompatibility were observed in an AZ31 Mg alloy after ECAP processing. Acceptable toxicity to MG63 cells with grade I toxicity was demonstrated by the AZ31 Mg alloy after multipass ECAP processing, which was comparable to other standard Mg alloys such as Mg–Ca and Mg–Zn, showing good biocompatibility in in vivo studies. However, a three-pass back-pressure ECAP alloy indicated grade II toxicity, which may be attributed to higher Mg and Al concentrations leading to an osmolarity shock to the cells. Therefore, optimum SPD processing parameters should be selected for fabrication of Mg alloys showing the required mechanical, chemical, and biological properties suitable for biomedical applications. As Mg alloys have a hexagonal close-packed lattice, significant attention must be paid also to the control of crystallographic texture in the ECAP-processed material. The latter provides an extra tool to effectively tune the mechanical properties and resorption rates without reducing cytocompatibility (140–142). Biological properties of the surface can be further enhanced by additional surface modifications (143).

6. SUMMARY AND CONCLUSIONS

The results of this overview provide a clear demonstration that processing by SPD can produce superior properties in bulk nanostructured materials. Based on the evidence available to date, significant information now exists on the underlying mechanisms that account for these special properties, opening new possibilities for practical applications of these materials in novel structural and functional applications. Recent discoveries demonstrate new opportunities for SPD processing for improving other physical and chemical properties of these materials. These properties were mentioned only briefly in this review but nevertheless have achieved considerable advances in recent years (12, 144, 145). These include, for example, increased superconductivity, thermoelectricity, giant magnetoresistance, improved hydrogen storage, and improved biocompatibility.

A general rule in modern materials science is that any material breakthrough in the twentieth century required, from the time of the initial innovation, about two decades to achieve widespread market acceptance (146). It appears that bulk nanostructured metallic materials, as produced by SPD processing, are also following this track. Although the first developments and research started at the beginning of the 1990s, there have been very significant developments in the commercialization of these materials in recent years. This is especially evident from the widespread production of advanced pilot articles with new functionalities (38).

There are three primary advantages associated with the application and commercialization of bulk nanostructured metals: markedly superior properties, the potential for efficient fabrication using SPD processing techniques such as ECAP-C, and the possibility of using these materials to produce cutting-edge products. Furthermore, many of these new applications involve, or will involve, extreme environmental conditions requiring both exceptional strength and improved functional properties.

It is reasonable to anticipate that, in the very near future, the nanostructuring of materials by SPD processing will lead to new breakthroughs in the development of bulk solids with superior properties for advanced structural and functional applications.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.
ACKNOWLEDGMENTS

R.Z.V. gratefully acknowledges financial support from the Russian Science Foundation in the framework of Project No. 20-63-47027 (Section 4.3 on nanostructured Ti for medical applications) and the Ministry of Science and Higher Education of the Russian Federation in the framework of a state assignment (Project No. FSNM-2020-0027) for research in his part of this review. The work of T.G.L. was supported by the European Research Council under Grant Agreement No. 267464-SPDMETALS. We are especially grateful to all who provided support, comments, and fruitful discussions and allowed us to cite their publications during the work on this review, in particular colleagues from the Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, and the Laboratory for Mechanics of Advanced Nanomaterials, Saint-Petersburg State University, for jointly obtained results. We especially thank our colleagues and friends from the International NanoSPD Steering Committee for drawing our attention to major new activities in the field of SPD processing. We apologize to all collaborators whose contributions we may have overlooked. However, their comments on this review are always welcome and highly appreciated.

LITERATURE CITED

Contents

Humberto Palza, Belén Barraza, and Felipe Olate-Moya .. 1

Dynamic Nuclear Polarization Solid-State NMR Spectroscopy for Materials Research
Iliia B. Moroz and Michal Leskes ... 25

Crystalline Cholesterol: The Material and Its Assembly Lines
Neta Varsano, Jenny Capua-Shenkar, Leslie Leiserowitz, and Lia Addadi 57

Molecular Magnetism
Nicholas F. Chilton .. 79

Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
Ruby A. Kharod, Justin L. Andrews, and Mircea Dincă .. 103

Design and Characterization of Host Frameworks for Facile Magnesium Transport
Yirong Gao, Tara P. Mishra, Shou-Hang Bo, Gopalakrishnan Sai Gautam, and Pieremanuele Canepa ... 129

Strain Glass State, Strain Glass Transition, and Controlled Strain Release
Dong Wang, Yuanchao Ji, Xiaobing Ren, and Yunzhi Wang .. 159

Angstrofluidics: Walking to the Limit
Yi You, Abdulghani Ismail, Gwang-Hyeon Nam, Solleti Goutham, Ashok Keerthi, and Boya Radha ... 189

Exothermic Formation Reactions as Local Heat Sources
Shane Q. Arlington, Gregory M. Fritz, and Timothy P. Weihs .. 219

Innovations Toward the Valorization of Plastics Waste
Mechanical Properties of Metal Nanolaminates
Irene J. Beyerlein, Zezhou Li, and Nathan A. Mara ... 281

Transport in Lithium Garnet Oxides as Revealed
by Atomistic Simulations
Wei Lai .. 305

Hybrid Improper Ferroelectricity: A Theoretical, Computational,
and Synthetic Perspective
Nicole A. Benedek and Michael A. Hayward .. 331

Using Severe Plastic Deformation to Produce Nanostructured
Materials with Superior Properties
Ruslan Z. Valiev, Boris Straumal, and Terence G. Langdon 357

Recent Advances in Understanding Diffusion in Multiprincipal
Element Systems
Anuj Dash, Aloeke Paul, Sandipan Sen, Sergiy Divinski, Julia Kundin,
Ingo Steinbach, Blazej Grabowski, and Xi Zhang ... 383

Biomineralized Materials for Sustainable and Durable Construction
Danielle N. Beatty, Sarah L. Williams, and Wil V. Srbbar III 411

Brittle Solids: From Physics and Chemistry to Materials Applications
Brian R. Lawn and David B. Marshall .. 441

Small-Scale Mechanical Testing
Vikram Jayaram .. 473

Material Flows and Efficiency
Jonathan M. Cullen and Daniel R. Cooper ... 525

Architectural Glass
Sheldon M. Wiederhorn and David R. Clarke .. 561

Indexes

Cumulative Index of Contributing Authors, Volumes 48–52 593

Errata

An online log of corrections to Annual Review of Materials Research articles may be
found at http://www.annualreviews.org/errata/matsci