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Abstract

The past decade was marked by significant advances in the development
of severe plastic deformation (SPD) techniques to achieve new and supe-
rior properties in various materials. This review examines the achievements
in these areas of study and explores promising trends in further research
and development. SPD processing provides strong grain refinement at the
nanoscale and produces very high dislocation and point defect densities as
well as unusual phase transformations associated with particle dissolution,
precipitation, or amorphization. Such SPD-induced nanostructural features
strongly influence deformation and transport mechanisms and can substan-
tially enhance the performance of advancedmaterials.Exploiting this knowl-
edge, we discuss the concept of nanostructural design of metals and alloys
for multifunctional properties such as high strength and electrical conduc-
tivity, superplasticity, increased radiation, and corrosion tolerance. Special
emphasis is placed on advanced metallic biomaterials that promote innova-
tive applications in medicine.
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1. INTRODUCTION

Processing by severe plastic deformation (SPD) is one of the most efficient means for fabricating
bulk ultrafine-grained (UFG) metals and alloys. Pioneering research in this area has been con-
ducted for over 25 years (1, 2). Figure 1 illustrates the recent growth in research activity on SPD
(3).Most trends in SPD research are thoroughly described in several recently published review ar-
ticles and books covering different aspects of nanostructured materials from SPD processing, such
as simulation and development of SPD techniques (1, 4–7); grain refinement and its mechanisms
in various materials, such as pure metals, model and commercial alloys (2, 3, 6, 8–10), intermetallic
compounds, and some ceramics and polymers (10–12); and fundamentals of superior properties
and the innovative potential of nanostructured materials processed by SPD (1, 2, 12–17).

Recent studies demonstrated that SPD processing allows the introduction of effective grain
refinement as well as nontypical phase transformations (3, 14). These processes result in the for-
mation of peculiar, nonequilibrium structural features at the nanoscale, such as high dislocation
densities located mainly at grain boundaries (GBs) (1, 18), nanotwins (13), solid solution decom-
position in alloys leading to the formation of nanoprecipitates (14, 16), and the redistribution of
alloying elements segregating at GB areas (8, 18). Especially remarkable is the unusual combina-
tion of SPD-induced diffusive and displacive (martensitic) phase transformations (19, 20).

These SPD-induced nanostructural features influence deformation mechanisms in SPD ma-
terials and lead to substantial enhancement of their performance to a degree that cannot be at-
tained by conventional processing. Exploiting this knowledge opens a new way of formulating the
concept of nanostructural design by SPD processing and for evolving superior multifunctional
properties in UFG materials.

The past decade has been marked by significant progress in developing and optimizing SPD
processing techniques to achieve superior properties. These developments are associated either
with modifications of the conventional SPD techniques to promote their commercialization (such
as an improvement in the efficiency of processing techniques and a reduction of material wastage)
(4, 7, 21, 22) or with the optimization of SPD regimes and the development of complex SPD
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Figure 1

Numbers of papers published on research in severe plastic deformation and high-pressure torsion. Data were
collected from Scopus on April 23, 2020, and the papers were counted from those published in peer-reviewed
journals, including proceeding papers screened by reviewing processes. Figure adapted from Reference 3.
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processing routes when two or more SPD processing techniques are combined (23, 24). Complex
SPD processing routes applied to metallic materials provide further microstructural refinement
and therefore higher reductions in grain size, resulting in drastic improvements in performance.
A combination of several processing techniques provides an extra tool for texture design in UFG
metallic materials to further control the anisotropy of microstructure and the resulting properties.

The present article provides a critical review of the latest achievements in advanced SPD pro-
cessing, focusing on developments that have not received appropriate attention in earlier reviews.
Historical developments and a short overview of themost popular (classical) SPD processing tech-
niques are presented briefly in the beginning of Section 2. Modified SPD processing techniques
and regimes are described in Section 2.1, followed by a presentation of complex SPD processing
routes applied for nanostructuring of various metals and alloys in Section 2.2.Microstructural fea-
tures of UFG materials produced by advanced SPD processing, as well as the main principles of
nanostructural design via SPD to achieve superior mechanical and functional properties, are pre-
sented and discussed in Sections 3 and 4. The existing and potential applications of UFG metals
via advanced SPD processing are outlined and discussed in Section 4.

2. RECENT TRENDS IN THE DEVELOPMENT OF SPD TECHNIQUES

The processing of nanomaterials by SPD techniques has become a popular topic in research labo-
ratories around the world. From a historical point of view, SPD processing is relatively young, but
its basic idea goes back to the work of ancient artisans who used a repetitive forging and folding
technique (2). This process was first developed for steel manufacturing in China for use in swords
about 2,000 years ago. The processing approach was also employed for manufacturing Wootz
steel in Japan and later in India. This processing concept then spread further to the Middle East,
where the famous Damascus steel was developed. Impressively, all these processing techniques
were developed without metallurgical knowledge and without any fundamental understanding of
the basis for the processing procedures.

Edalati & Horita (25) recently carried out a detailed analysis of research activities related to
SPD from 1935 to 1988. In 1935, Prof. P.W. Bridgman of Harvard University (26) introduced
a die set for compression and torsion straining and conducted the first studies of the effects of
high hydrostatic pressure combined with high shear stress on phase transformations in miner-
als and metals. The principles of Bridgman’s fundamental work were further extended using die
sets combining shear (torsion) and compression straining to introduce high shear strain without
changing the sample shape. Such experimental die sets were developed in the 1980s by Polish and
British scientists and by Russian scientists from Yekaterinburg (formerly Sverdlovsk, USSR) (see
25). Very large strains, with true strains exceeding 6–8, were achieved using these facilities, leading
to significant microstructural refinement in several metals.

The year 1988 included another milestone. A pioneering study on SPD processing was per-
formed in Ufa (27), resulting in the production of metals and alloys with submicrometer grain
sizes and high-angle GBs that showed outstanding superplastic properties. This was further stud-
ied in the works of Valiev and colleagues (28) using a combination of torsion and compression,
later termed high-pressure torsion (HPT), with the Bridgman type of die set. A short time later,
this research was extended to equal-channel angular pressing (ECAP) (29). The results of these
early studies are summarized in Reference 1.

HPT and ECAP have become the most popular SPD processing techniques, although these
processes are being continuously modified, as described below. Furthermore, several other SPD
processing techniques are now also available, including accumulative roll bonding (ARB), twist
extrusion, and multiaxis forging. Several recent reviews and books (7, 24, 30, 31) focus on the
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different SPD techniques and provide detailed information about their main principles and recent
developments.

However, these SPD techniques have been used primarily for laboratory-scale research. The
requirement for economically feasible production of UFG metals and alloys raises several new
problems in the development of SPD processing.The key challenges are to reduce material waste,
obtain a uniformUFG structure and enhanced properties in bulk billets and products, and increase
productivity. Strategies for solving these problems are examined in the following section.

2.1. Continuous SPD Processing Techniques

To increase the efficiency of SPD techniques, continuity is the key to obtaining long-sized prod-
ucts and ensuring high processing efficiency. Over the past decade, this challenge has been suc-
cessfully completed for both SPD techniques: ECAP and HPT.

2.1.1. Continuous equal-channel angular pressing. The conventional ECAP process is very
labor intensive, since it requires significant manual effort related to inserting and removing the
relatively short billets (typically having lengths of approximately 100–200 mm) from conventional
dies. Therefore, the conventional ECAP technique was modified into continuous forms that
can be used for efficient production of material in relatively large volumes with lower waste (4).
Early research focused on the development of continuous ECAP procedures combined with a
rolling mill or drawing, with the aim of processing long metal strips and rods (see 7). How-
ever, further modification of these techniques was required for processing materials with UFG
structures.

Rosochowski & Olejnik (32) proposed another modification of the ECAP technique for pro-
cessing of long samples. This incremental ECAP (I-ECAP) is a cyclical process in which the billet
is delivered into the deformation zone, where a small volume of material is deformed by simple
shear in each cycle by a reciprocating punch. This technique was further modified into a double-
billet I-ECAP process (33).

Continuous pressing was first proposed by Segal et al. (34) as a continuous simple shear process
of long rods based on the famous Conform process. The ECAP with a Conform (ECAP-C) pro-
cedure was first developed and used for grain refinement in commercially pure aluminum down
to 650 nm (35). Today, this technique is termed the ECAP-C process (Figure 2), and it has been
used in laboratories around the world (4, 22, 23, 36–38).

a b
Stationary constraint die 

Work piece

Figure 2

(a) A schematic illustration of an equal-channel angular pressing–Conform (ECAP-C) device and (b) Al
billets after six ECAP-C passes. Panel a adapted with permission from Reference 35. Panel b adapted with
permission from Reference 39.
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Similar to what occurs with the conventional ECAP technique, ECAP-C samples may be sub-
jected to various processing routes and regimes, as described in detail in Reference 4. Computer
modeling of ECAP-C is widely applied for selection of load-bearing elements and materials (23,
39). ECAP-C can be applied not only to easily deformable materials, such as commercially pure
Al, but also to various alloys, commercially pure Ti, and steels (22, 23, 38, 39).

A combination of ECAP-C with other deformation processing techniques (such as drawing
and rolling) can achieve superior mechanical and functional properties in metallic materials, and
this topic is considered in detail in Section 5.The ECAP-C process can be used to process metallic
rods with UFG microstructure, yielding much higher mechanical and functional properties than
conventional coarse-grained counterparts.

2.1.2. Continuous and modified high-pressure torsion techniques. The HPT process is
another very popular SPD technique, although it has three main limitations (5, 21):

1. Small disks produced by HPT are not suitable for most industrial applications;
2. The high degree of applied pressure that must be maintained through straining introduces

a limit on the installation construction; and
3. An inhomogeneous degree of strain is induced across the diameters of the disks, resulting

in microstructural and property gradients.

A modified HPT technique for the processing of rings introduced by Harai et al. (40) helps
to overcome some of these limitations. The replacement of a disk by a ring permits not only the
avoidance of the less-processed central part of the disk but also a further scaling-up of the HPT
technique to 100mm in diameter (41).The sample shape can be improved by high-pressure sliding
(HPS), which is another attempt that was developed for fabrication of sheet metallic materials that
are 100 mm long, 5 mm wide, and 0.8 mm thick (42).

The HPS technique is shown in Figure 3. Rectangular sheets can be processed using HPS,
and the process may be scaled up once an equal strain is introduced throughout the sample under
the same load.

Continuous HPT (CHPT), developed with the aim of microstructural refinement and subse-
quent enhancement of properties, was the next step in the improvement of HPT (43). CHPT was
successfully applied for manufacturing of 2-mm-diameter UFG wires from pure Al and Cu.

A new incremental HPT technique was also proposed recently (44). This technique offers new
possibilities for processing UFG metallic materials and appears attractive from the viewpoint of

a b

Groove

GrooveUpper anvil
Upper anvil

Guide pin

Lower anvil

Lower anvil

Sample
Sample

Plunger

Sample

Pressure

Pressure

Plunger

Figure 3

Illustration of high-pressure sliding. (a) Assembly of two anvils with guiding pins, one plunger, and two thin
sheet samples. (b) Cross-sectional view of assembly. Figure adapted with permission from Reference 42.
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industrial applications, as it allows HPT processing of cylinders instead of disks. The method
is worthy of further development, as are investigations of its effect on the microstructure and
properties of various materials.

2.2. Complex SPD Processing Routes

Processing by combinations of several deformation processing techniques, including at least one
SPD technique, is often referred to as complex SPD processing routes. For example, two-step
SPD processing, such as ECAP followed by HPT,was reported to induce additional refinement in
the grain size and a consequent increase in mechanical strength and ductility (45). In the section
below, the main features of complex SPD processing are considered, as is its influence on the
microstructure and properties of numerous metals and alloys.

2.2.1. Combinations of two and more SPD techniques. Different combinations of SPD
techniques used for processing of metallic materials can be found in the literature [e.g., ECAP
and HPT (5, 46–48), ECAP and hydrostatic extrusion (49), and ECAP and ARB (50), all applied
to various metallic materials]. Typically, a combination of SPD processing techniques leads to
microstructures that are quite different from those obtained if the material is processed by an in-
dividual SPD technique. This includes extreme grain refinement; variations in morphology, size,
and fractions of second-phase precipitates; dislocation structure and density; crystallographic tex-
ture and microtexture; and GB misorientations.

Grain refinement and further nanostructural modification in metallic materials processed us-
ing complex SPD routes generally result in improvedmechanical properties (47, 49).However, the
microstructure evolution during processing using combined SPD techniques also depends on
the processing regimes (i.e., homologous temperature and strain) and chemical composition of
the material (i.e., its thermal stability). This was clearly seen for pure Ti processed by ECAP
and then subjected to HPT at 450°C and at room temperature (45). The latter processing re-
sulted in a much finer grain size and higher mechanical strength.

A combination of SPD techniques was also used for grain refinement in a commercial ZK60
magnesium alloy to improve its functional properties. In a recent report (50), the hydrogen storage
properties of this alloy were investigated after ECAP processing for 6 passes and ARB processing
for 25 passes. The average grain size was approximately 0.8 μm after ECAP and was further
reduced to around 0.3 μm after ARB processing. The latter also resulted in the formation of basal
texture with (002) planes parallel to the rolling surface. The hydrogen absorption and desorption
kinetics were also measured. Processing only by ECAP resulted in a very low hydrogen storage ca-
pacity of 0.5 weight percent (wt.%). Additional processing by ARB refined the microstructure and
improved the hydrogen absorption. The sample from the ECAP material absorbed 4.77 wt. %
of hydrogen in 24 h, whereas the capacity of the sample processed by ECAP and ARB was
6.4 wt. %. The enhanced kinetics of hydrogen absorption and desorption in the alloy after addi-
tional ARB processing were related to the finer grain size, since hydrogen diffusion is generally
faster along GBs and the GBs and GB triple junctions can act as nucleation sites for the hydride
phase.

2.2.2. SPD processing with traditional metal-forming techniques. After simple SPD pro-
cessing, samples can also be subjected to deformation by a conventional metal-forming technique
(such as rolling, drawing, or extrusion) or by a combination of techniques. This may be conducted
to change the shape of the sample, to further modify the microstructure and properties, or both.
For example, the application of rolling allows the fabrication of UFG sheets from SPD-processed
billets or rods. Several combinations of SPD techniques with deformation processing methods are
reported in the literature. For example, ECAP was combined with rolling at various temperatures
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Figure 4

Electron back-scattering diffraction (EBSD) orientation maps of Cu after equal-channel angular pressing (ECAP) (a–d) and ECAP with
subsequent rolling (e–h) for one pass (a,e), two passes (b, f ), four passes (c,g), or ten passes (d,h). Low-angle boundaries (2° ≤ θ < 15°) and
high-angle boundaries (θ ≥ 15°) are shown on EBSD maps using white and black lines, respectively. Abbreviations: ED, extrusion
direction; ND, normal direction; RD, rolling direction; TD, transverse direction. Figure adapted with permission from Reference 56.

(51, 52), with extrusion (53), with swaging and drawing (54), and with forging and drawing
(55), and ECAP-C was combined with drawing (23). Analysis of these results shows that the
final microstructure, properties, and shape of the processed material are determined by both
microstructure and texture of the SPD-processed material before the metal-forming operation
(or operations) and the parameters of the metal-forming operation (temperature, strain, strain
rate, and strain path).

The microstructure and mechanical properties of commercially pure Cu after 1–10 ECAP
passes using route BC were compared with those of samples further cold rolled to a total reduc-
tion ratio of 90% (56). Cold rolling caused a transformation of the relatively equiaxed UFG struc-
ture developed in Cu during ECAP processing into a lamellar structure with even finer boundary
spacing (Figure 4). For example, a boundary spacing approaching 180 nm after 10 ECAP passes
decreased to approximately 110 nm after rolling (Figure 4g,h). A negligible grain refinement in
terms of the formation of new boundaries takes place during rolling of ECAP-processed Cu.Cold
rolling after ECAP with a corresponding number of passes also led to a significant increase (about
20%) in the average fraction of high-angle GBs.

The metal-forming parameters of cold rolling after ECAP also significantly affect the mi-
crostructure, texture, and mechanical properties of SPD-processed material. This was clearly
demonstrated for commercially pure Ti (57, 58) subjected to a two-step process consisting of
ECAP (at 300°C) and cold rolling with a reduction ratio of 70–76% (at room temperature or at
liquid nitrogen temperature). Such processing served to activate two strengthening mechanisms
in the pure metal: GB strengthening due to the grain size reduction from the ECAP processing
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and dislocation strengthening from deformation by rolling. A reduction of rolling temperature
from 20°C to cryogenic temperature improved the yield strength of the two-step processed pure
Ti (ECAP for six passes followed by rolling) from about 785 MPa to about 915 MPa due to an
increased dislocation density in the cryorolled material (57).

Clear advantages of combining ECAP with further thermomechanical treatment have been
demonstrated in the development of Ti-based materials for biomedical applications (23, 59), in-
cluding shaping semiproducts in the form of sheets or rods and enhancement of properties intro-
duced by ECAP in UFG materials (see also Section 4.3 on nanostructured metallic biomaterials).

The development of complex SPD processing routes for fabrication of UFG materials is usu-
ally based on numerous experimental trials and is a very time-consuming and expensive process
requiring a significant amount of material and a precise analysis of microstructure, thermal sta-
bility, and mechanical properties. Thermomechanical simulation of the metal-forming processes
helps to minimize the amount of expensive SPD-processed material needed for such experimental
work, increases the efficiency of the work, and thus reduces the cost (23, 60). The results may be
used directly in the laboratory as well as in full-scale production.

A physical simulation of hot rolling of ECAP-processed UFG pure Ti was carried out (60)
using 20 × 15 × 5 mm3 samples to predict microstructure and texture evolution, as well as the
microhardness, during hot rolling. It was demonstrated that hot rolling leads to a breakup of the
ECAP-type crystallographic texture, a further refinement of grain size, and an improvement in
microhardness with increasing total reduction ratio.

Recently, a modifiedmethod calledHPT extrusion (HPTE) was proposed (61).This technique
combines HPT and cyclic extrusion. HPTE used for processing bulk nanostructured materials in
quantities suitable for industrial applications has several advantages: simple shear conditions, high
hydrostatic pressure in a rod-shaped specimen, and the accumulation of a large strain in a single
pass. Furthermore, hybrid materials with helical architecture, gradient materials, and such can be
produced in a rather simple way using this newly developed process.

3. NANOSTRUCTURAL ARCHITECTURE OF SPD-PROCESSED
MATERIALS

Studies performed during the past decade, using techniques including 3D atom probe tomography
(APT), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and X-ray
diffraction, revealed that SPD processing not only can form ultrafine grains but also may be used
to engineer GB structures and generate nanoparticles, segregation, or nanoclusters and other
structural elements at the nanoscale. The nature of these phenomena is related to the fact that, to-
gether with grain refinement, processing by SPD may also lead to unusual phase transformations
as a dissolution of second phases, precipitation, amorphization, allotropic phase transformations,
and other nanostructural features (see, for example, 12, 14, 16, 18). Also, the unusual combinations
of SPD-induced diffusive and displacive (martensitic) phase transformations (i.e., transitions with
or without mass transfer) can take place during SPD (19, 20, 62). By contrast, the type and mor-
phology of such nanostructural elements, as well as their number density, control deformation and
transport mechanisms responsible for improvements in the mechanical, chemical, and physical
properties of bulk nanostructured materials through SPD techniques and the optimization of
processing regimes. Nanostructuring via SPD processing is considered in this section.

3.1. Grain Boundaries in Nanostructured Materials

The density of GBs and interphase boundaries in UFGmaterials with submicron (100–1,000 nm)
or nanocrystalline (<100 nm) sizes is very high and can significantly impact properties. UFG
materials can thus be considered as interface-controlled materials (63, 64).
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Gleiter (64) suggested that the atomic structure of GBs in UFGmaterials may be characterized
by several special features, in contrast to GBs in conventional polycrystalline materials. This is
especially important formaterials in whichUFGmicrostructures are produced by SPD techniques
(1, 12, 18).

Although the physical mechanisms of microstructure evolution during SPD processing call
for further investigation, numerous studies demonstrate that the formation of a UFG structure is
determined by the evolution of cells or dislocation substructures formed in the early deformation
stages into ultrafine grains with high-angle boundaries during subsequent deformation. At the
same time, and depending on the regimes of SPD processing, different types of GBs can be formed
in the UFG materials, such as high and low angle, special and random, and equilibrium and so-
called nonequilibrium GBs with strain-distorted structures containing extrinsic dislocations, as
well as boundaries with GB segregation of alloying elements (16, 18).

As discussed in Section 2, the fabrication of UFG metals and alloys with predominantly
high-angle GBs by SPD techniques was first revealed by Valiev et al. (1) and colleagues (2, 25).
In the past decade, active development and application of electron back-scattering diffraction
(EBSD) have provided quantitative data on the low- to high-angle GB ratio and the presence
of special and random boundaries in various metals and alloys subjected to SPD. For example,
EBSD analysis has been used to plot misorientation histograms (65). A Mackenzie plot has been
added to each histogram for an ECAP-processed Al 6016 alloy. The boundary misorientation
angle histogram in Figure 5 shows that after the first ECAP pass, the microstructure is charac-
terized by approximately 93% of the boundaries with misorientation angles <15° (i.e., low-angle
boundaries).

a b
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Figure 5

Relative frequency of dislocation cell or subgrain boundaries as a function of misorientation angle for Al 6016 samples processed by
equal-channel angular pressing. (a) One pass, (b) two passes, (c) four passes, and (d) eight passes with a Mackenzie plot (i.e., the
distribution of misorientation angles for a randomly textured polycrystal) superimposed on each histogram. Figure adapted with
permission from Reference 71.
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After the second pass (Figure 5b), the average dislocation cell size is reduced considerably,
but the inhomogeneous structure remains characteristic for most cells orientated parallel with
the Y (or transverse) direction. Simultaneously, the boundary misorientation distribution shifts
upward, with about 67% of boundaries comprising misorientation angles <15°. After four ECAP
passes, some equiaxed dislocation cells or subgrains appear together with some shape irregularities
and alignment of the microstructure off-axis to the Y (or transverse) direction. The distribution
histogram with approximately 34% of boundaries having a misorientation of <15° reflects a more
gradual upward shift in the corresponding misorientation angle (Figure 5c). Further processing
to eight passes resulted in an evident reduction of the dislocation cell or subgrain size and upward
shifts in the misorientation distributions (Figure 5d). A near-random distribution after 12 ECAP
passes was observed (65).

The results of this work, as well as another recent study by EBSD analysis (66), provide con-
vincing support for earlier conclusions that the formation of a UFG structure with mostly high-
angle boundaries takes place during ECAP when the number of passes is greater than four to six
(true strain is greater than four to six). Such very large strains cannot be achieved using conven-
tional processing techniques, such as rolling, extrusion, or drawing, and therefore their application
provides no opportunity for the formation of a real UFG microstructure with mostly high-angle
GBs. Moreover, SPD techniques involve simple shear, which makes it possible to form the ultra-
fine grains as equiaxial or at least close to it in shape.

A variety of characterization methods—including high-resolution TEM (HRTEM), X-ray
diffraction,Mössbauer spectroscopy, dilatometry, and differential calorimetry (see, for example, 1,
10, 16)—were used in different studies to investigate features of GBs in UFG materials produced
by SPD techniques. These studies clearly demonstrated that optimization of the SPD processing
regimes results in the formation ofmostly high-angleGBswith specific nonequilibrium structures.
The application of GB diffusion measurements (67–69) and HRTEM analyses (18, 70, 71) helped
identify and characterize the effect of the severe deformation processing on transformations of
the GB structures. For example, it was revealed that HPT may result in the formation of a very
high density of dislocations, facets, and steps at GBs in the Al-3%Mg UFG alloy (72). Numerous
reports confirm the appearance of such nonequilibrium GBs in different materials processed by
SPD (1, 18, 69, 73).

The term nonequilibrium GBs has been accepted and is used by the entire SPD materials
science community. It is also used here to describe GBs that are defined formally as boundaries
with strain-distorted structures and high densities of extrinsic dislocations (1, 18).

Thus, recent studies of the GB structure in SPD-processed UFG materials suggest that spe-
cific nonequilibrium GBs with strain-distorted structures associated with a correspondingly large
residual microstrain are a typical feature in these nanomaterials.

3.2. Nanotwins in Metallic Nanomaterials

Decreasing grain size usually impedes twinning in coarse-grained, face-centered-cubic metals.
In nanocrystalline metals, twinning becomes easier with decreasing grain size up to a certain
grain size, reaching a maximum twinning probability, and then twinning becomes more difficult
when the grain size decreases even further (74). The difference between twinning mechanisms in
nanocrystalline and coarse-grainedmaterials has been revealed bymolecular dynamics simulations
and experimental observations.

The formation of nanotwins can be promoted if certain properties intrinsic to the material
and external deformation conditions are satisfied, including a relatively low stacking fault energy,
a low deformation temperature, and a high strain rate (74). A range of grain sizes is apparently
optimal for deformation twinning for different materials and testing conditions. In particular,
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a b

50 nm 5 nm

Figure 6

Transmission electron microscopy images of a typical grain with a high density of deformation twins in ultrafine-grained Cu processed
by equal-channel angular pressing with subsequent cold rolling. (a) The white arrows indicate the positions of the twins, and the
diffraction pattern from this region is provided. (b) Inset is a high-resolution transmission electron microscopy image of this region
with its atomic-crystalline structure indicated. Figure adapted with permission from Reference 75.

lower temperatures, additional cold rolling, extrusion, and drawing can all promote the formation
of nanotwins.Figure 6 shows anHRTEM image ofUFGCu after ECAP and cold rolling at liquid
nitrogen temperature. In it, 10–20-nm twins can be clearly observed (75). Enhanced strength and
ductility can also be obtained in nanocrystalline materials due to deformation twinning (75, 76).

Twin GBs (even in nanotwins) typically contain high-energy facets in addition to the main
low-energy �3 {111}1//{111}2 facet (� is the reverse bulk density of the coincidence sites). The
observation of such high-energy facets in materials after SPD is evidence of nonequilibrium GBs
processed by SPD (77).

3.3. Segregation in SPD-Processed Nanostructured Alloys

Several investigations of thermal stability as a function of the impurity level in metals have sup-
plied indirect evidence of GB segregation in UFG materials. However, GB segregation has re-
cently been observed in UFG materials processed by SPD directly (18, 73, 78–80). APT is the
main technique used for atomic-scale characterization in most of these reports. Crystallographic
information provided by this technique is very limited, and the GB misorientation usually cannot
be determined. Moreover, there is almost no possibility of statistical analysis because of the very
small GB areas that are analyzed. Nevertheless, the demonstration of GB segregation in various
SPD-processed metallic materials confirms that this is not a marginal feature.

SPD processing resulted in the formation in a UFG AA6061 alloy with a microstructure
characterized by Mg, Cu, and Si segregation along planar defects attributed to GB (78). The
thickness of the layer enriched by solute elements was about 2 nm. The local enrichment was
<2 atomic percent (at. %). Segregation at GB was also observed in several Al alloys processed by
both ECAP and HPT (79, 80). The achievement of a mean grain size of about 100 nm and a large
fraction of high-angle GBs after 20 turns of HPT processing was reported in AA7075. The data
in Figure 7 (81) show that clusters approximately 3–5 nm wide are made of GB segregants. Local
concentrations up to 25 at. % of Mg in layers of approximately 6–8 nm thick were also observed
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a   Mg b   Cu c   Zn

20 nm20 nm

GB2GB2

GB1GB1

GB3GB3

Figure 7

Atom probe tomography elemental maps of a polycrystalline region of an Al–Zn–Mg–Cu alloy after eight passes of equal-channel
angular pressing. (a) Mg, (b) Cu, and (c) Zn maps at three grain boundaries (GBs): GB1, GB2, and GB3. Red arrows indicate the
position of the GBs. Figure adapted with permission from Reference 82.

by APT (80). It appears, therefore, that nonequilibrium GBs with strain-distorted structure have
higher amounts of segregating atoms with respect to relaxed interfaces, and the thickness of the
segregated layer may be determined by the distorted layer near the nonequilibriumGB. It follows
from APT observations that the distributions of the solute elements may be influenced by the
local configurations of the GB, especially dislocations lying at or near the boundaries.

3.4. Nanoparticles and Second-Phase Precipitates

Solution quenching promotes the formation of particles in many alloys subjected to SPD (see,
e.g., 17, 83, 84). Examples of such nanoparticles as large as about 10–20 nm precipitated in the
UFG Al alloys after ECAP processing are presented in these studies. Nanoparticles appeared due
to dynamic aging and caused additional precipitation hardening of the alloys. Parameters of SPD
processing usually determine the size and morphology of precipitates. In recent years, the subject
of dynamic aging originating from SPD has attracted greater attention because the morphology
of precipitates and their formation kinetics differ considerably from the processes of conventional
aging and provide for new possibilities in the production of advanced alloys that can be hardened
with age (85, 86).

It was recently observed that dynamic aging during HPT competes with dynamic dissolu-
tion of precipitates in Cu-based alloys (87). As a result of this competition, a certain steady state
forms between dynamic aging and dynamic dissolution (88). This is controlled by an accelerated
diffusion–like mass transfer between matrix solid solution and precipitates. As a result of this dy-
namic equilibrium, a certain steady-state solute concentration is established.

4. NANOSTRUCTURAL DESIGN OF ULTRAFINE-GRAINED
MATERIALS THROUGH SPD PROCESSING

As shown in Section 3, unique structural characteristics result from nanostructuring of bulk mate-
rials by SPD. Among them are ultrafine grain sizes and shapes; high density of interfaces and
lattice defects in the grain interior; and complex structure of GBs, nanotwins, segregation,
and second-phase nanoparticles. These nanostructural features can strongly influence transport
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and deformation mechanisms, thereby changing the properties of not only metallic materials
but also some polymers and ceramics (3, 12, 13).

Deformation mechanisms in nanometals are significantly influenced by GBs, which constitute
a large volume fraction in UFGmetals. In general, GB-mediated deformation mechanisms can be
divided into two basic categories: (a) pureGBmechanisms related toGB sliding andmigration and
(b) GB-mediated mechanisms associated with twinning and dislocation emission from GBs (12,
13, 69). The pure GBmechanisms include GB sliding, stress-driven GBmigration, grain rotations
mediated byGB dislocations, andGB and triple-junction diffusional creep.Thesemechanisms can
significantly contribute to plastic deformation in metallic nanograined materials. Both deforma-
tion mechanisms depend on the crystallography of GBs and their defect structure related to the
presence of GB dislocations and vacancies. In turn, as discussed in Section 3, the GB structure is
determined by SPD processing conditions and regimes.

Computer simulation (89) and experimental studies (90, 91) have substantiated the recent dis-
covery of the influence of GB segregation onGB sliding and diffusion in aluminum alloys. Zn seg-
regation at GBs significantly accelerates the diffusion kinetics and sliding, while Mg segregation
inhibits this process. This opens the way to control the mechanical properties of nanomaterials
and their thermal stability through GB engineering (16, 70, 73, 91).

We now consider some examples of nanostructural design ofmetals and alloys for enhancement
of their mechanical and functional properties. These problems refer specifically to simultaneously
improving properties of multifunctional materials that are usually mutually exclusive (12, 17).

4.1. Superior Strength and Ductility

Earlier work on SPD processing (1, 2) focused mainly on grain refinement to improve the me-
chanical strength of metallic materials according to the well-known Hall–Petch relationship,

σy = σ0 + KHPd− 1
2 , 1.

where σ y is the yield stress, d is the grain size, and σ 0 and KHP are constants for a given material.
Later, it was revealed that this relationship may break down for nanomaterials with a grain size of
<20–50 nm (13).Nevertheless, the Hall–Petch law is usually valid for UFGmaterials produced by
SPD, as they generally have grain sizes in the submicrometer range. The mechanical strength of
puremetals can be enhanced by a factor of about 3–6 due to extreme grain refinement via SPD (92,
93). However, as noted above, the SPD-processed materials often have various nanoscale features
that provide additional strengthening. The contribution of other strengthening mechanisms (e.g.,
dislocation hardening, precipitation hardening) can further enhance mechanical strength, result-
ing in values that are much higher than those predicted by the standard Hall–Petch relationship
(92, 94). Such observations of superstrength have been demonstrated for several Al alloys (such
as Al 1570 and Al 7475), Ti-6Al-4V, and steels and have already been considered in detail in the
literature (12, 92).

GB segregation can provide additional strengthening. Experimental studies of a high-strength
UFGAl 1570 alloy, using an APT technique, demonstrated a clear relationship betweenMg segre-
gation at GBs and strength (80). Similar observations were also recently reported for several UFG
Al alloys and stainless steels (79, 95, 96). A physical explanation for such segregation strengthen-
ing is related to dislocations generated at GBs (80). The emitted dislocation glides through the
grain interior and is trapped by the opposite GB so that a dislocation–GB interaction plays the
role of the rate-controlling mechanism. GB segregation can suppress the emission of dislocations
due to a solute drag effect that, in turn, results in higher values of stress required for the disloca-
tion emission. Thus, a new strengthening mechanism related to GB segregation can be observed
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Figure 8

Expansion of a dislocation loop in the presence of segregation. The blue and red ovals denote the segregations that hinder and promote
loop expansion, respectively. (a,b) The ends (A and B) of the dislocation loop, which nucleates and expands under the action of the
applied load, are pinned by segregation. (a) Projection on the dislocation glide plane illustrates segregation-induced pinning.
(b) Projection on the grain boundary plane illustrates the fact that segregation can either promote or hinder dislocation loop expansion,
depending on whether pinning is strong or weak. (c) By increasing the applied load, dislocation loop expansion is realized via its
bow-out if segregation-induced pinning is strong. (d) If pinning is weak, loop expansion is realized via the unpinning and lateral motion
of points A and B. Figure adapted with permission from Reference 97.

in SPD-processed UFG—referred to as GB segregation hardening (16). A model of this process
has been recently considered (97). Figure 8 illustrates the expansion of a dislocation loop in the
presence of segregation.

Ductility is required to enable metal-forming operations as well as to avoid catastrophic fail-
ure during service. The maximum strain of homogeneous plastic flow before the onset of neck-
ing represents the uniform elongation, which is determined by the resistance of the material to
macrolocalization of plastic flow (13, 93). This parameter can be useful for determining the ability
of material to undergo stretch metal–forming operations. Another parameter determining ductil-
ity is the elongation to failure. This parameter takes into account the necking elongation, which is
controlled by a competition between localized plastic flow and fracture.Typically, the total elonga-
tion of coarse-grained materials is slightly higher than their uniform elongation. For UFGmetal-
lic materials, the difference between these two parameters may become very significant. Thus, it
is important when analyzing the ductility of UFG metals to unambiguously indicate the precise
measure of ductility.

Strength and ductility are the key mechanical properties of any material, but these properties
are typically mutually exclusive, such that materials may be strong or ductile but are rarely both.
Earlier works focusing on mechanical properties of SPD-processed materials demonstrated that
grain refinement down to the nanoscale leads to very high mechanical strength but that these
materials invariably exhibit low tensile ductility (98, 99). This problem was well known in metals
subjected to heavy straining by processes such as rolling, extrusion, or drawing. The reason for
this is that the plastic deformation mechanisms associated with the generation and storage of
dislocations may not be active in heavily deformed materials during their further tensile straining.
Such a situation is typical for SPD-processed materials as well.

Due to the significance of the problem of mechanical behavior of nanomaterials, the so-called
paradox of strength and ductility was introduced in the literature (100, 101). Early reports on
combinations of extraordinary strength and ductility in some bulk SPD-processed materials
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attracted significant attention from the research community, promoting investigations on the
development of novel approaches to improve tensile ductility of bulk nanostructured materi-
als. Recent overviews of these research activities are now available (13, 92, 102, 103). Various
strategies to improve the low tensile ductility of nanostructured metals and alloys have been
proposed. These approaches can be classified into two separate groups: mechanical strategies and
microstructural strategies. The mechanical strategies are based on manipulating some mechanical
characteristics of the UFG materials, such as strain rate sensitivity, work hardening ability, or
both, which can be controlled via testing parameters (temperature, strain rate, or both). The
microstructural strategies are based on the concept of microstructural design at the nanoscale.

Among the strategies for ductility enhancement in UFG metals (see, for example, 13, 102)
are the development of bimodal microstructures consisting of micro- and nanograins, developing
graded nanograined metals or nanotwinned structures, and tailoring of the stacking fault energy
via alloying. These strategies focus on increasing the strain hardening rate, which leads to im-
proved uniform elongation during tensile tests. By contrast, several recent GB engineering strate-
gies are intended to increase the strain rate sensitivity by accelerating GB sliding, significantly
enhancing the ductility (total elongation). For example, the presence of Zn segregation at GBs in
Al alloys with UFG structure sharply accelerates sliding, which leads to a considerable increase in
ductility and even superplasticity at room temperature (90). At the same time, by managing the
deformation conditions (e.g., temperature, strain rate), it is possible to successfully combine high
strength and ductility.

4.2. High Strength and Electrical Conductivity

A new strategy for nanostructural design in Al and Cu alloys for advanced conductors was re-
cently developed (85, 104, 105). In this strategy, the strengthening mechanisms and mechanisms
of electrical resistivity are manipulated by grain refinement (down to the submicrometer scale)
and dynamic aging during SPD processing. This results in decomposition of the supersaturated
solid solution and the formation of second-phase nanoprecipitates in alloys with UFG structure
(Figure 9). Boundary strengthening and precipitation hardening resulting in superior mechanical
strength are characteristic of these UFG microstructures with second-phase nanoprecipitates. At
the same time, significantly enhanced electrical conductivity results from the very low content of

Nanosized 
particles D < 500 nm

Nanosized particles of 
different diameters

Figure 9

Schematic illustration of nanostructure with nanoparticles to realize the combination of high strength, good
electrical conductivity, and enhanced thermal stability in Cu and Al alloys (85). Black arrows indicate average
ultrafine grains (D < 500 nm) (hexagons) and black lines indicate nanosized particles of different diameters.
Figure adapted from permission from Reference 104.

www.annualreviews.org • Severe Plastic Deformation 371

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
02

2.
52

:3
57

-3
82

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 b

y 
ru

sl
an

.v
al

ie
v@

ug
at

u.
su

 o
n 

07
/0

7/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



solute atoms and the absence of Guinier–Preston zones in the Al matrix. Theoretical evaluations
(105) and experimental studies (85, 104) confirm this approach.

The dependence is well described by the ratio for strength (Equation 2) and electrical resistance
(Equation 3) that were applied to assess the properties of UFG alloys in References 85, 104, and
105:

σtotal = σo + σgs + σss + σdis + σp, 2.

where σo is Peierls stress, σgs is grain size strengthening, σss is solid solution strengthening, σdis is
dislocation strengthening, and σp is precipitation strengthening.

The effective resistivity of an alloy, ρ, following Matthiessen’s rule, is normally written as

ρ = ρT + ρD, 3.

where ρT is a temperature-dependent phonon contribution and ρD is a contribution from the
lattice defects and solutes and is independent of temperature. The temperature-independent part
describes resistivity from various defects and thus can be split up into several contributions as

ρtotal = ρss + ρp + ρdis + ρv + ρgb, 4.

where ρss is the resistivity due to scattering by solute atoms dissolved in the matrix; ρp is the resis-
tivity added by second-phase particles; ρdis and ρv are resistivity due to dislocations and vacancies,
respectively; and ρgb is the resistivity due to scattering on GBs.

For example, AA6201, an alloy widely used for electroconductors, was chosen for experimental
confirmation (85). Disks with diameters of 20 mm and thicknesses of 1.5 mm were solution heat
treated at 530°C for 2 h andwater quenched.Then,HPTwas used for SPDprocessing of the disks.
A strong decomposition of the supersaturated solid solution, confirmed by a significant decrease in
the lattice parameter of the Al matrix,was revealed by X-ray diffraction.A goodmatch of the X-ray
results with recent APT was revealed (105). Dynamic aging leads to a near-complete purification
of the matrix from the solute atoms and formation of 10- to 30-nm spherical nanoprecipitates.
The strength and electrical conductivity calculations based on the obtained structural data are in
good agreement with the experimental values (105).

4.3. Metallic Biomaterials with Superior Strength and Functionality

Nanostructuring of biocompatible metallic materials by SPD opens up new avenues for their
applications in biomedical engineering (38, 106). The most impressive results in this area were
achieved for commercially pure Ti. Ti is recognized as one of the most bioinert metals, which
makes it attractive for producing medical implants (107, 108). Unlike many Ti alloys, it does not
contain any toxic elements. In terms of biocorrosion resistance, Ti is superior to most surgical
metals due to the formation of a very stable passive layer of TiO2 on its surface. Another favorable
property of Ti is its low elastic modulus (half that of stainless steel and Co–Cr alloys), which results
in less stress shielding and associated bone resorption around Ti orthopedic and dental implants.
Furthermore, Ti is lighter than other surgical metals and produces fewer artifacts during com-
puted tomography and magnetic resonance imaging. However, the static and fatigue strengths of
commercially pure Ti are too low for it to be used in some load-bearing medical applications. For
example, small plates and screws are often used in the maxillofacial area of a skull (109). However,
depending on the injury type and locality of bone fixation, loads on implants can vary from 200
to 700 N. The maximum load for a 1-mm-diameter screw can create stresses as high as 900 MPa,
which are significantly beyond the ultimate tensile strength (UTS) of commercially pure Ti and
require using stronger Ti alloys or stainless steels.
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Recent studies have shown that the application of SPD processing techniques such as ECAP-C
with a subsequent drawing of the material is the most effective way to produce long-length rods
with nanoscale structures (38, 110). Nanostructuring of Ti increases its strength and fatigue resis-
tance to levels that exceed those reported for Ti-6Al-4V ELI alloy (110, 111).TheUTS in Ti after
ECAP plus drawing is almost twice the value in the initial state after hot rolling. The strength be-
comes even higher when the degree of straining during drawing is increased without any dramatic
reduction of ductility. This is in contrast to conventional deformation processing, such as rolling,
extrusion, or drawing, when increasing accumulated strain and microstructure refinement results
in strengthening but a concomitant reduction in ductility. This is because these processing tech-
niques result in a subgrain type ofmicrostructure characterized by pronouncedmetallographic and
crystallographic textures as well as high volumes of low-angle GBs. High strength with retained
ductility allows the miniaturization of load-bearing implants made from the nanostructured Ti.
Miniaturized Ti dental implants (112) and miniplates have been designed using these principles
(113).

4.3.1. Nano-Ti dental implants. The reduced diameter of nano-Ti implants allows a reduction
in damage during their insertion into the jaw, thus making implantation a less traumatic procedure
for the patient. Another advantage is that these implants could be installed in patients with a thin
alveolar bone, where conventional implants cannot be used or additional intervention is required
(106, 112). The research to date has shown that implants from nano-Ti also have better biological
response, including increased cell survival and enhanced cell adhesion (110, 111). Previously, it was
found that the colonization of fibroblasts on the surface of grade 4 Ti increased significantly after
nanostructuring and chemical etching (114). Observations of patients in a clinical setting have
shown that increasing the biological properties of nano-Ti contributes to the rapid engraftment
of the implant, and about 70% of nano-Ti implants could be loaded immediately after inserting.
So far, over 7,000 dental implants made from nanostructured grade 4 Ti with diameters of 2.4 and
3.5 mm, as well as several implants with a diameter of 2.0 mm, have been inserted in several clinics
in the Czech Republic (Figure 10). To date, not a single case of rupture or breakage of nano-Ti
implants has been reported. The calculations and experimental results show that using available
nanostructured Ti with an UTS of 1,330 MPa makes it possible to securely reduce the diameter
of the implant down to 2.0 mm (Figure 10a). This enables nano-Ti implants even in the case of
alveolar bones narrower than 4.5 mm.

a b
c

Figure 10

A 2.0-mm-diameter Nanoimplant® (http://www.timplant.cz/en/) from nanostructured grade 4 Ti in (a) a panoramic X-ray radiograph
after surgery and (b) the control radiograph obtained after incorporation of the implant. (c) Image of a miniplate with six holes made
from nanostructured grade 4 Ti (110). Panels a and b reproduced from Reference 115. Panel c reproduced from Reference 116.
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Table 1 Mechanical properties of conventionally processed and nanostructured grade 4 Ti produced by ECAP-C and
drawing

Processing and treatment
conditions UTS (MPa) YS (MPa)

Elongation
(%)

Reduction of
area (%)

Fatigue strength at
107 cycles (MPa)

Conventional Ti (as received) 700 530 25 52 340
Nano–grade 4 1,330 1,267 11 48 620
Conventional Ti-6Al-4V ELIa 940 840 16 45 530

Abbreviations: ECAP-C, equal-channel angular pressing–Conform; ELI, extra low interstitials; UTS, ultimate tensile strength; YS, yield stress.
aData on Ti-6Al-4V ELI alloy are presented for comparison (110).

4.3.2. Nano-Ti plates for maxillofacial surgery. Using the fatigue endurance limit of con-
ventional and nano-Ti (Table 1), it is possible to design nano-Ti plates with reduced thickness
for maxillofacial surgery. Plate thickness can be reduced from 0.9 to 0.7 mm without degradation
of its mechanical performance (113). While the standard plates withstood 17,000 ± 500 cycles, a
nano-Ti plate with reduced cross section withstood 105,000 ± 800 cycles (113). This result points
to an enhancement of bending strength of the plate from nano–grade 4 Ti despite its reduced
thickness, an important advantage over the standard item made from conventional Ti.

4.3.3. Surface modification to improve biointegration. Surface properties are an important
aspect of an implant design to ensure effective osseointegration. Pure Ti has very low bioactivity
(i.e., it is bioinert) and does not bond directly to the human bone. As a result, the implant may
shift and loosen during service life. A significant body of research has shown that grain refinement
down to the nanoscale in commercially pure Ti can increase the adhesion and proliferation of
various bone-forming cell types (114–121). Additional surface modification can further improve
the bioactivity of implants made from UFG Ti, including chemical etching and deposition of
bioactive coatings (108, 122–126).

HF-HNO3–based solutions are used for acid treatment of the implant surface. HF acid inter-
acts with the TiO2 oxide film and results in the formation of a dense film of fluorides and hydrides.
In recent work (126), a mixture of acid etchants was used to reveal the effect of topography of the
nano-Ti surface. Nanostructured Ti was found to produce rougher surfaces after etching. Similar
results have been reported by numerous researchers (127–129), demonstrating that the specific
relief on the nano-Ti surface facilitates higher rates of adhesion for both fibroblast (129) and pre-
osteoblast (127) cells.

Biocompatible coatings can facilitate integration of the Ti implants into human bone (130).
Therefore, research into synthesis of biocompatible coatings integrating inorganic (e.g., Ca- and
P-containing phases) and organic, biologically active components on Ti implants is quite relevant
at present (131, 132), with recent results on bioactive coatings on nanostructured biometals
(133–135).

5. BIODEGRADABLE METALS

Interest is growing in the application of biodegradable metallic materials for manufacturing of
devices in the biomedical industry (136, 137). There are strict requirements on reliability, biore-
sorbability, and biodegradability of materials used for the manufacturing of implants and stents.
Nanostructured Mg and Fe can potentially satisfy all these requirements due to their bioresorba-
bility and biodegradability.High strengthmay be achieved by grain refinement, and corrosion per-
formance can be controlled due to the second-phase particle distributions. The required Young’s
modulus, the increased possibility of bone adaptation, and a controlled drug release option may
be reached by micro- and macroporosity (137, 138).

374 Valiev • Straumal • Langdon

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
02

2.
52

:3
57

-3
82

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 b

y 
ru

sl
an

.v
al

ie
v@

ug
at

u.
su

 o
n 

07
/0

7/
22

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



The high potential of SPD-processed Mg alloys for applications as biodegradable materials
was demonstrated in a recent study focused on their biocompatibility (139). Significantly im-
proved mechanical strength and lower corrosion rates without degradation of biocompatibility
were observed in an AZ31 Mg alloy after ECAP processing. Acceptable toxicity to MG63 cells
with grade I toxicity was demonstrated by the AZ31 Mg alloy after multipass ECAP processing,
which was comparable to other standard Mg alloys such as Mg–Ca and Mg–Zn, showing good
biocompatibility in in vivo studies. However, a three-pass back-pressure ECAP alloy indicated
grade II toxicity, which may be attributed to higher Mg and Al concentrations leading to an os-
molarity shock to the cells. Therefore, optimum SPD processing parameters should be selected
for fabrication of Mg alloys showing the required mechanical, chemical, and biological properties
suitable for biomedical applications. As Mg alloys have a hexagonal close-packed lattice, signifi-
cant attention must be paid also to the control of crystallographic texture in the ECAP-processed
material. The latter provides an extra tool to effectively tune the mechanical properties and re-
sorption rates without reducing cytocompatibility (140–142). Biological properties of the surface
can be further enhanced by additional surface modifications (143).

6. SUMMARY AND CONCLUSIONS

The results of this overview provide a clear demonstration that processing by SPD can produce
superior properties in bulk nanostructured materials. Based on the evidence available to date,
significant information now exists on the underlying mechanisms that account for these special
properties, opening new possibilities for practical applications of thesematerials in novel structural
and functional applications. Recent discoveries demonstrate new opportunities for SPD process-
ing for improving other physical and chemical properties of these materials. These properties
were mentioned only briefly in this review but nevertheless have achieved considerable advances
in recent years (12, 144, 145). These include, for example, increased superconductivity, thermo-
electricity, giant magnetoresistance, improved hydrogen storage, and improved biocompatibility.

A general rule in modern materials science is that any material breakthrough in the twentieth
century required, from the time of the initial innovation, about two decades to achieve widespread
market acceptance (146). It appears that bulk nanostructured metallic materials, as produced by
SPDprocessing, are also following this track.Although the first developments and research started
at the beginning of the 1990s, there have been very significant developments in the commercializa-
tion of these materials in recent years. This is especially evident from the widespread production
of advanced pilot articles with new functionalities (38).

There are three primary advantages associated with the application and commercialization of
bulk nanostructured metals: markedly superior properties, the potential for efficient fabrication
using SPD processing techniques such as ECAP-C, and the possibility of using these materials to
produce cutting-edge products. Furthermore, many of these new applications involve, or will in-
volve, extreme environmental conditions requiring both exceptional strength and improved func-
tional properties.

It is reasonable to anticipate that, in the very near future, the nanostructuring of materials by
SPD processing will lead to new breakthroughs in the development of bulk solids with superior
properties for advanced structural and functional applications.
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