XI Международная конференция «ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И ПРОЧНОСТЬ КРИСТАЛЛОВ», памяти академика Г.В. Курдюмова

РАСПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ СВОЙСТВ СВАРНОГО НИКЕЛИДА ТИТАНА В 30HE СВАРКИ

<u>Киселев А.Ю.¹</u>, Хлопков Е.А.², Чернявская Н.В.³, Бурховецкий В.В.³, Курушкин Д.В.², Ханаев В.М.⁴, Камаев А.О.⁵, Волков Г.А.⁶, Вьюненко Ю.Н.⁴

¹АО "Атомэнергопроект", Санкт-Петербург, Россия ²Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия

 3 Донецкий физико-технический институт им. А.А. Галкина, Донецк

⁴ООО "ОПТИМИКСТ ЛТД", Санкт-Петербург-Новосибирск, Россия

 ^{5}AHO "Центр испытаний, сертификации и стандартизации функциональных материалов и технологий", Москва, Россия

⁶Санкт-Петербургский государственный университет, Санкт-Петербург, Россия a.kiselev@ase-ec.ru

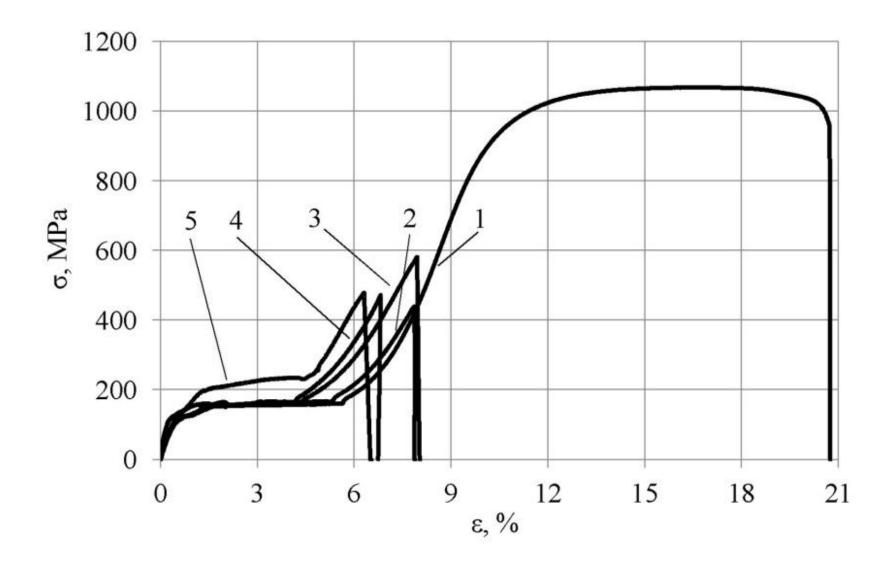
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта №19-38-90285.

26 – 30 октября 2020 года, г. Черноголовка

МАТЕРИАЛЫ И МЕТОДЫ

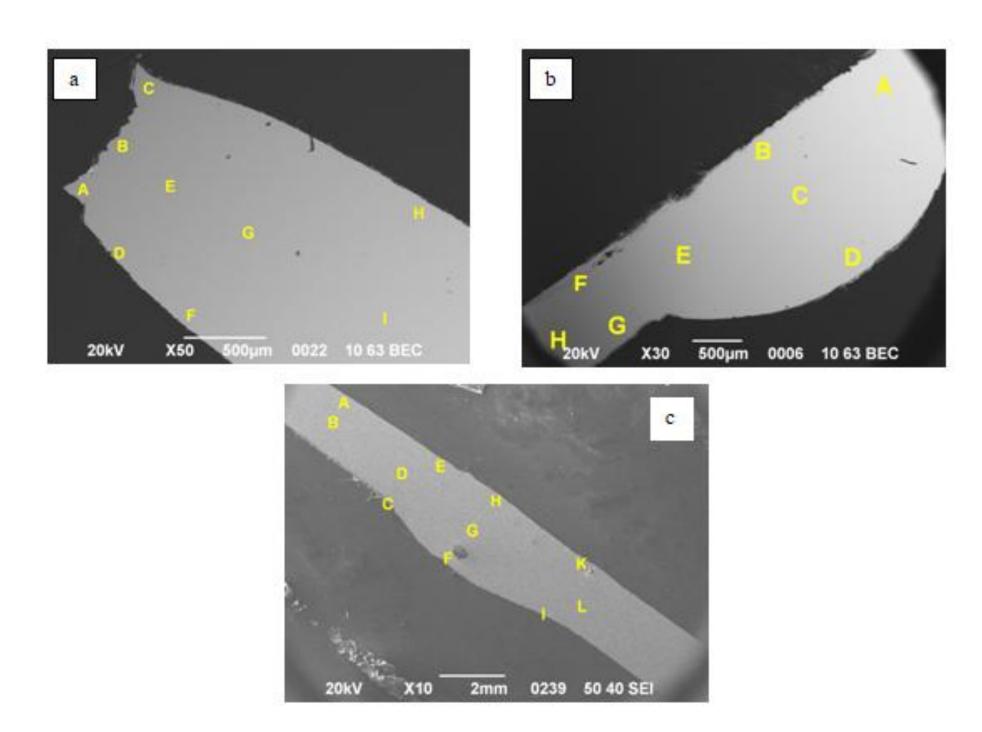
Материал.

• Исследовали возможности сварных соединений проволоки диаметром 2 mm из сплава Ti-55.42 wt.% Ni.

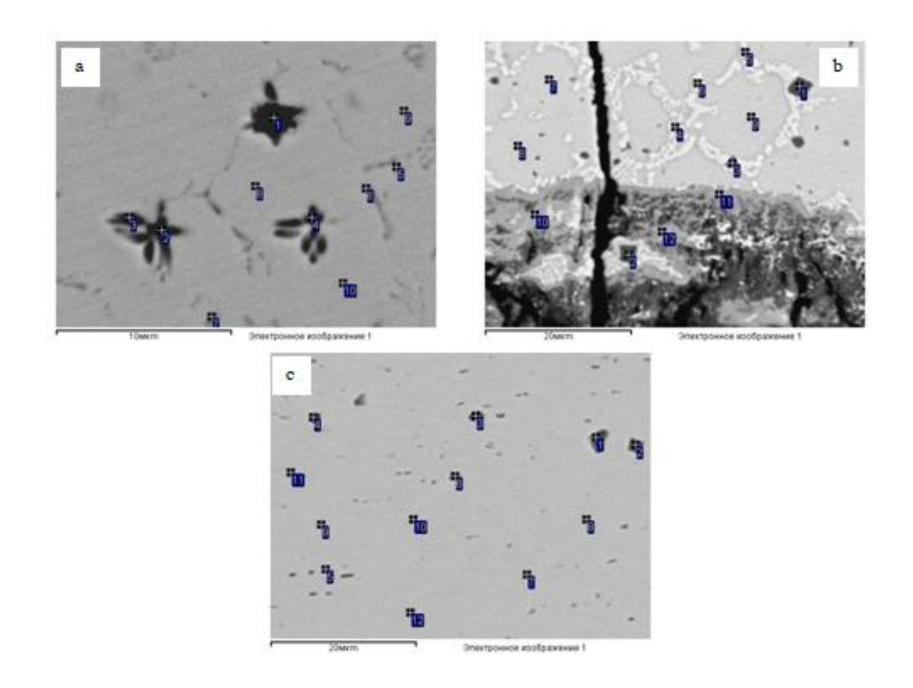

Параметры сварки.

- Для сварки в атмосфере аргона использовали сварочный источник Сварог TIG 315 P AC/DC, постоянный электрический ток -10 A, напряжение -12 V.
- Для изготовления стыковых швов в гелиевой атмосфере использовали сварочный источник EWM ForceTig 552, постоянный электрический ток -45 A, напряжение -18.5 V.
- Термообработку (ТО) проводили в режиме отжига при температуре 773 K в течение 30 min (остывание с печью).

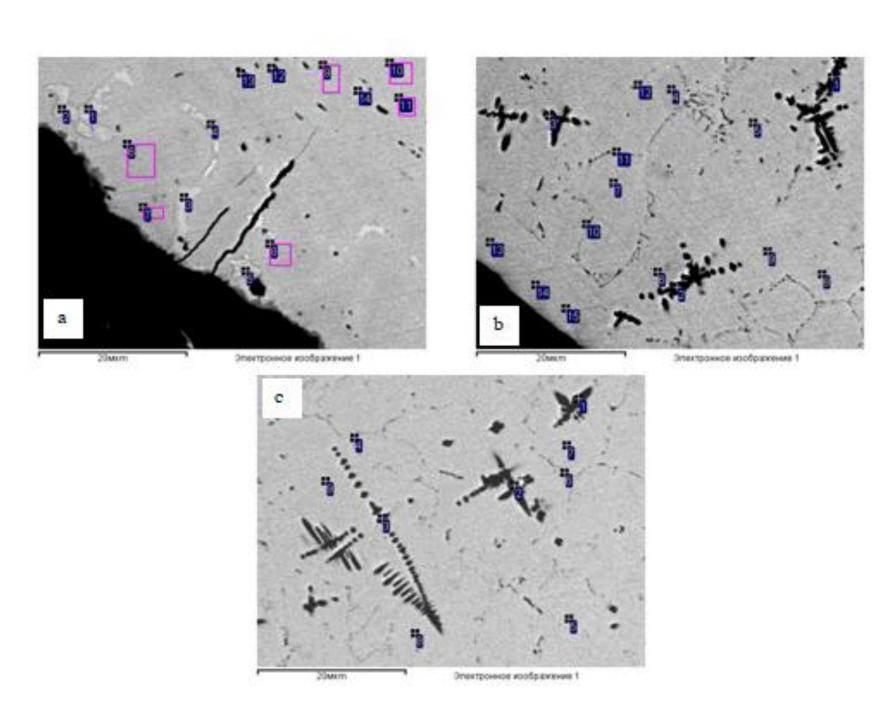
Испытательное оборудование.


- Изучение зависимости деформации ε от величины растягивающих усилий проводили на установке Instron 5985 при комнатной температуре. Скорость движения подвижного захвата была равной 4 mm/min для кривых 1 и 2 (рис.1), в остальных случаях -1 mm/min.
- Изучали структуру материала на продольных шлифах в электронном микроскопе JSM-6490LV. Наличие энергодисперсионной приставки INCA Penta FETx3 позволило проводить анализ химического состава исследуемого материала в локальных объемах.
- Изучение тепловых физических параметров образцов, не прошедших термообработку, проводили на дифференциальном сканирующем калориметре METTLER TOLEDO 822e и ТА Instruments Q20. Скорость изменения температуры при нагреве и охлаждении была равна 10 К/min. Исходный материал сравнивали с материалом центральной зоны проваров и от центра к границе с зоной термического влияния. Зону термического влияния (ЗТВ) изучали на семимиллиметровом участке проволоки, граничащей с проваром.
- Микротвердость вдоль сварного соединения, изготовленного в атмосфере гелия, изучали с использованием прибора ПМТ-3 с нагрузкой в 1 N в среднем не менее чем по 3 уколам.

ПРОЧНОСТНЫЕ СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ ИЗ СПЛАВА ТіNi


Прочностные свойства проволочных образцов Ti-55.42 wt.% Ni: 1 – исходный образец, 2 – сварной образец (атмосфера Ar), 3 – сварной образец (атмосфера He), 4 – сварной образец (атмосфера He + 30 термоциклов), 5 – сварной образец (атмосфера He + без отжига)

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ СВАРКИ НИКЕЛИДА ТИТАНА


Продольные шлифы зон разрушения исходного материала (a), образца, сваренного в атмосфере Ar (b), шлифа сварного соединения, полученного в атмосфере He (c)

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ СВАРКИ НИКЕЛИДА ТИТАНА

Зоны шлифа разрушенного и сваренного в атмосфере Ar соединения: a — точка A, b — точка G, c — точка H

ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ СВАРКИ НИКЕЛИДА ТИТАНА

Зоны шлифа, сваренного в атмосфере He соединения: а – точка C, b – точка F, c – точка G)

Сварка проволоки в гелиевой атмосфере привела к образованию пор в провареннном материале и пограничном слое (с). Возможно, это обусловлено локальным закипанием перегретого расплава. На странице 7, а показано, что наряду с порами в пограничном слое у поверхности образца присутствуют параллельные трещины глубиной $\sim 10~\mu m$ и ~ 20 µт. Данный образец не подвергался нагружению. Поэтому размер трещин существенно меньше размера аналогичного дефекта на странице 6, b.

КАЛОРИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ СВАРКИ TiNi

- Предварительно три образца (Св-Ц и ИМ без ТО) нагревали до 450°C, а затем охлаждали до -100°C.
- Скрытая теплота превращения в материале зоны сварки, сваренном в атмосфере Ar, оказалось почти в три раза меньше теплопоглощения в исходном материале (Таблица 2, Св-Ц).
- В никелиде титана, проваренном в гелиевой атмосфере, по-видимому, превращение в этом материале идет в два этапа. В начале поглощение тепловой энергии идет в зернах, обогащенных никелем, а несколько позже, порождая второй экстремум, проходит перестройка кристаллической решетки в микрообъемах с преимущественной концентрацией титана. Удельная теплота превращения в никелиде титана, сваренного в атмосфере гелия, составляет ~ 80 % от аналогичного параметра исходного материала. Это может быть следствием того, что в значительной части материала мартенситное превращение полностью отсутствует.
- Дальнейшее исследование тепловых свойств образцов (ИМ с ТО, Св-2, Св-3, ЗТВ-4 ЗТВ-7) осуществляли после предварительного охлаждения до -100°С (Св-2 и 3) и -50°С (ИМ с ТО, ЗТВ-4 ЗТВ-7) и нагрева до 450°С. Скорость изменения температуры составила 10К/min. Образцы из зоны провара с индексом Св-2 и Св-3 следовали за центральной областью Св-Ц. Участок ЗТВ-4 высотой 1 mm вырезали сразу после СВ-3. Образцы ЗТВ-5 ЗТВ-7 готовили с интервалом 1 mm. Анализ результатов исходного материала, прошедшего отжиг, показал смещения интервала прямого превращения и температуры начала обратного фазового перехода Ан в область более высоких значений (Таблица 1, ИМ с ТО).

КАЛОРИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ СВАРКИ TiNi

- При удалении от центральных зон проваров изменение интервалов прямого мартенситного превращения [Мн; Мк] происходит немонотонно (Таблицы 2 и 3). При этом тепловые характеристики Q к 3 участку образца из зоны провара Св-3, изготовленного в атмосфере Ar, вышли на уровень исходного материала (Таблица 2), после чего в значительной степени не менялись.
- В области провара температура начала прямого фазового превращения Мн образца, сваренного в атмосфере Ar, повышается, а затем снижается с приближением к границе с зоной термического влияния. В этой области снова происходит рост Мн, после чего в измеренных участках ЗТВ наблюдали постепенное повышение этой величины. В образцах из зоны провара второго соединения температура Мн только снижалась (Таблица 3). В зоне термического влияния отмечена аналогичная с описанной выше ситуация.
- Температура окончания прямого фазового перехода Мк аргонового и гелиевого образцов при удалении от центра смещается в сторону более низких температур. На границе провара с ЗТВ в образце, сваренном в среде аргона, Мк повышаются (Таблица 2), а в гелиевом соединении рост происходит большими скачками. При удалении от границы с проваром температуры Мк приближены к аналогичному значению в исходном материале, не прошедшем термообработку.
- В зоне проваров температура начала обратного мартенситного превращения Ан сместилась в область более высоких температур при отступлении от центральной области сварки и на участке Св-3 приняла значение, сопоставимое с Ан исходного материала (Таблицы 1-3). Температура Ак в образцах менялась немонотонно.

8

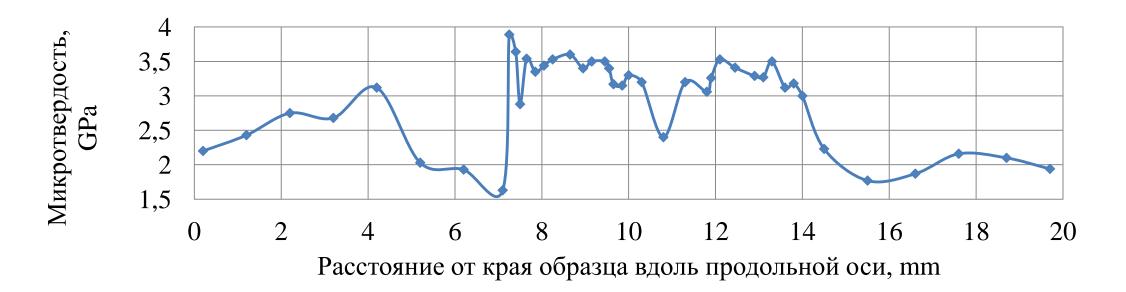
КАЛОРИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ СВАРКИ ТіNi

Таблица 1. DSC исследования проволочных образцов

Образец	Мн, °С	Мк, °С	Q, J/g	Aн, °C	Ак, °C	Q, J/g
ИМ с ТО	23,84	-7,04	20,63	38,18	51,50	21,19
ИМ без ТО	8,25	-36,88	23,21	30,88	51,25	22,88

Таблица 2. DSC исследования проволочных сварных соединений, изготовленных в атмосфере Ar

Обр.	Мн,°С	Мк,°С	Q,J/g	Ан,°С	Ак,°С	Q,J/g
Св-Ц	40,30	-1,96	6,82	-8,66	44,20	8,57
Св-2	54,13	-17,69	8,02	8,64	56,09	9,56
Св-3	14,98	-3,70	24,12	32,07	49,48	23,27
3TB-4	37,19	1,64	20,49	35,74	45,72	21,31
3TB-5	38,98	-31,52	20,28	33,89	44,57	19,91
3TB-6	42,31	-34,12	18,72	33,38	46,99	18,93
3TB-7	41,01	-38,03	19,91	34,11	54,19	19,19


Таблица 3. DSC исследования проволочных сварных соединений, изготовленных в атмосфере He

Обр.	Мн,°С	Мк,°С	Q,J/g	Ан,°С	Ак,°С	Q,J/g
Св-Ц	30,03	-53,48	19,59	9,13	47,51	18,84
Св-2	25,10	<-100	20,15	11,95	47,46	18,20
Св-3	15,36	-24,84	24,24	28,97	51,24	22,97
3TB-4	37,99	1,10	20,56	36,98	46,79	20,46
3TB-5	38,00	-27,27	20,59	32,27	42,52	20,4
3TB-6	41,80	-33,34	18,32	33,77	47,19	16,18
3TB-7	41,53	-37,12	20,28	34,64	52,23	20,09

МИКРОТВЕРДОСТЬ СВАРНЫХ СОЕДИНЕНИЙ ИЗ СПЛАВА TiNi.

На странице 11 представлены данные по микротвердости образцов, изготовленных в атмосфере гелия, прошедших термообработку и без нее. В области сварки значения микротвердости значительно выше (до 4 ГПа), чем на границе с проваром, где показатели падают до 1.5 ГПа. При границы провара с ЗТВ величина исследуемой удалении характеристики немонотонна. Повышение значений микротвердости происходит на расстоянии 3 мм от границы и достигает 3 ГПа, что соответствует параметрам в области сварки. После этого до края образца эти показатели снова уменьшаются и могут снизиться до 2 ГПа. Отметим, что в центре сварного стыка микротвердость также снижается в сравнении с соседними показателями и может упасть до величины менее 2.5 ГПа. При этом отжиг повышает изучаемый параметр в зоне термического влияния. В проваре характеристика микротвердости имеет более высокие значения в неотожженном образце.

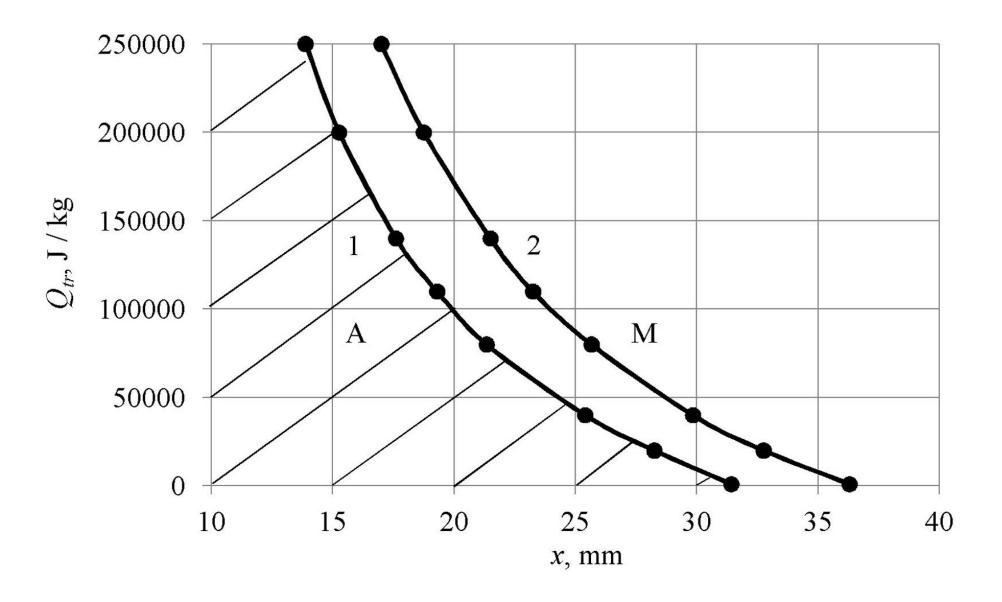
МИКРОТВЕРДОСТЬ СВАРНЫХ СОЕДИНЕНИЙ ИЗ СПЛАВА TiNi.

Микротвердость в зоне сварного соединения образца, изготовленного в атмосфере гелия и неотожженного. Отметки: 10.8 mm - центр сварки, 7,2 и 13,9 mm - границы провара

Микротвердость в зоне сварного соединения образца, изготовленного в атмосфере Не и прошедшего отжиг. Отметки: 10.5 mm - центр сварки, 5,7 и 13 mm - границы провара.

РАСЧЕТЫ ТЕПЛОВЫХ СВОЙСТВ В СВАРНЫХ СОЕДИНЕНИЯХ ТіNi

• Для анализа полученных результатов были проведены численные эксперименты по определению эволюции температурного поля в проволочных образцах. Для этого использовали одномерное уравнение теплопроводности:


$$\rho \cdot c(U) \cdot \frac{\partial U}{\partial t} = k \cdot \frac{\partial^2 U}{\partial x^2},$$

• где ρ – плотность материала; c(U) – теплоемкость; k – коэффициент теплопроводности; U – температура; t – время; x –координата. При этом предполагали, что $c(U) = c_0 + c_1$. Величина c_1 определяется из следующего соотношения:

$$Q_{tr} = \int_{A_s}^{A_f} c_1 \ dU$$

• где A_s и A_f — температуры начала и конца обратного мартенситного фазового перехода соответственно, Q_{tr} — теплота превращения кристаллической решетки. При равномерном распределении ее по интервалу превращения .

РАСЧЕТЫ ТЕПЛОВЫХ СВОЙСТВ В СВАРНЫХ СОЕДИНЕНИЯХ ТІМІ

Зависимость границ гетерофазного состояния от Q_{tr} : 1 — положение границы с аустенитом, 2 — положение границы с мартенситом, A — аустенит, М —мартенсит

РАСЧЕТЫ ТЕПЛОВЫХ СВОЙСТВ В СВАРНЫХ СОЕДИНЕНИЯХ ТІМІ

- В сваренном из двух кусков проволоки образце возникает 5 зон фазового состояния материала. В окрестностях сварного стыка имеются зоны аустенитного состояния. По краям образца материал может оставаться в мартенситном состоянии. В промежутках между зонами монофазного состояния будут расположены две гетерофазные градиентные по фазовому составу зоны.
- В тех случаях, когда в торцах образцов температура сможет достичь значение превышающее A_s , зоны мартенситного монофазного состояния исчезнут. В этом случае при охлаждении температуры прямого мартенситного превращения могут сместиться в сторону более низких температур по всему объему. При этом прямое превращение по объему образца может оказаться неполным, например в случае охлаждения до комнатной температуры, которая оказывается в интервале $[M_s, M_f]$ (соответственно температуры начала и конца прямого фазового перехода). Армированный остатками аустенита мартенсит и наличие межфазных границ изменяют форму кривой деформирования, отражающей взаимосвязь σ и ε . Аналогичной будет ситуация при растяжении сварных образцов, если материал проволоки в мартенситном состоянии окажется полностью в захватах разрывной машины. Сочетание мартенситных и гетерофазных областей в рабочей зоне деформируемого образца, надо полагать, изменяет взаимосвязь σ и ε .

ВЫВОДЫ

- Большие температурные градиенты, обусловленные значительно превосходящей силой тока во время сварки, являются фактором, порождающим микротрещины и остаточные напряжения в этом переходном слое. В результате вблизи поверхности двух образцов возникают структуры, снижающие уровень сопротивления материалов разрушению.
- При достижении более однородной структуры материала в результате сварки можно рассчитывать на повышение его прочностных и деформационных свойств.
- Необходимо снизить температурные градиенты в изделиях из никелида титана во время проведения операций изучаемого технологического процесса.