МЕТОДОЛОГИЯ И РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ ОСНОВНЫХ СОСТОЯНИЙ И ХАРАКТЕРИСТИК ВОДОРОДА В ГРАФЕНЕ, ГРАФИТЕ И СТАЛЯХ

Нечаев Ю.С., Александрова Н.М., Шурыгина Н.А., Черетаева А.О., Денисов Е.А.

ФГУП «ЦНИИчермет им. И.П. Бардина», Москва, Россия

Разработана и применена методология [1-5] эффективной аппроксимации и интерпретации спектров термодесорбции водорода в углеродных и металлических определенной Методология основана на аппроксимации материалах. термодесорбционных спектров (ТДС) водорода, полученных с гауссианами использованием одной скорости нагрева (В), и соответствующей обработке гауссианов (в приближении как реакции первого порядка, так и реакции второго энергий активации (Q)порядка). Это позволяет определить значения И предэкспоненциальных факторов (К₀) констант скорости (K)процессов десорбции, отвечающих ТДС пикам с разными максимальными температурами десорбции (7 тах).

Работа выполнена при финансовой поддержке РФФИ (Проект # 18-29-19149 мк).

Таблица 2 (из [5])

Характеристики ТДС пиков, отвечающих водородным «ловушкам» в ТРИП стали, железе и стали 20КСХ

Материал	№ ТДС пика	Т _{max} , К; (ф, К/мин)	Q _(eff) , кДж/моль	K _{0(eff)} , 1/c	С _{хлов} , ат. %	ΔН _в , кДж/моль
РИП (наводорож.), ε = 0 %, [1]	1	360 (6,66)	33 ± 5	1,6 ·10 ⁴	1,6 ·10 ⁻⁴	22 ± 6
РИП (наводорож.), ε = 0 %, [1]	2	415 (6 <i>,</i> 66)	28 ± 5	4,3 ·10 ²	5 ·10 ⁻⁵	18 ± 6
РИП (наводорож.), ε = 0 %, [1]	3	770-720 (6,66)	90 ± 25	3,5 ·10⁵	2 ·10 ⁻⁵	48 ± 25
РИП (ненаводорож.), ε = 0 %, [1]	4.1	767 (6 <i>,</i> 66)	210 ± 30	1,4 ·10 ⁹	1,3 ·10 ⁻⁵	
РИП (ненаводорож.), ε = 0 %, [1]	4.2	811 (6,66)	220 ± 40	9 ·10 ⁷	9·10 ⁻⁷	
е (наводорож.), ε = 0 – 15 %, [1]	5.1	338 (6 <i>,</i> 66)	32 ± 5	2,4 ·10 ²	2 ·10 ⁻⁵	27 ± 6
е (наводорож.), ε = 0 – 15 %, [1]	5.2	398 (6 <i>,</i> 66)	31 ± 5	20	2 ·10 ⁻⁵	27 ± 6

20КСХ (ненаводорож.), ε = 0 %, [19]	6	423 (5,0)	44 ± 5	6·10 ²	1,6·10 ⁻³	33 ± 6
20КСХ (ненаводорож.), ε = 0 %, [19]	7	823 (5,0)	90 ± 20	1·10 ³	3,5·10 ⁻³	80 ± 20

PMC. 1. (Fig. 4a, from [2]) Approximation by four Gaussians of the thermal desorption spectrum (β = 3 K/s) for deuterium (m/e = 4 amu) in hydrogenated epitaxial (on Pt substrate) single layer graphene (H-SLG) with a diamond-like structure (due to sp³ hybridization); it is in some extent compared with graphane-like structure.

Таблица 1. (Table 6 from [2]) Results of processing of the four Gaussians (Peaks 1-4 (H-SLF)) in FIG. 4*a* in the approximation of the first-order reaction.

ЛИТЕРАТУРА

[1] Yu.S. Nechaev et al. "On characteristics and physics of processes of thermal desorption of deuterium from isotropic graphite at 700-1700 K". // J. Nucl. Mater., 2020; 535:52162.

[2] Yu.S. Nechaev et al. "Studying the thermal desorption of hydrogen in carbon nanostructures and graphite". // Int. J. Hydrogen Energy, 2020; 45:25030-42.

[3] Yu.S. Nechaev et al. "On manifestation and physics of the Kurdjumov and spillover effects in carbon nanostructures, under intercalation

Peak #	T _{max} , K	Q, kJ/mole	K ₀ , s ⁻¹	K(T _{max}), S ⁻¹	Q*, kJ/mole	γ
1	543	24	8.8·10 ⁰	3.9.10-2	32	0.15
2	640	72	5.1.104	6.4·10 ⁻²	72	0.40
3	671	130	1.3·10 ⁹	1.0.10-1	129	0.30
4	733	224	$1.4 \cdot 10^{15}$	1.5·10 ⁻¹	222	0.15

of high density hydrogen". // Fullerenes, Nanotubes and carbon nanostructures, 2019. [4] Ю.В. Заика, Е.К. Костикова, Ю.С. Нечаев «Пики термодесорбции водорода: моделирование и интерпретация». // ЖТФ, 2021, т. 91, в. 2. [5] Ю.С. Нечаев и др. «Некоторые термодинамические и методические аспекты термодесорбционной спектроскопии водорода в сталях». // ПЧММ, 2013, № 4, с. 5-14.