ФНИЦ «Кристаллография и Фотоника» РАН Институт кристаллографии им. А.В. Шубникова РАН

краев электродов [3]

 \boldsymbol{P}^{s}

А.Ю. Белов

1. Введение

Выяснение механизма докритического роста сегнетоэлектрических доменов относится к актуальным дискусионным вопросам физики сегнетоэлектриков. Важность этого явления связана со сложностью термофлуктуационного зарождения доменов критического размера при обычных значениях электрического поля (парадокс Ландауэра). Согласно [1], данный «парадокс» экспериментально наблюдался в поликристаллических пленках твердых растворов Pb(Zr_{1-x}Ti_x)O₃, имеющих (при толщине около 250 nm) специфическую структуру, для которой характерна колончатая форма зерен. Петли гистерезиса в таких пленках демонстрируют необычную частотную зависимость коэрцитивного поля E_c : $1/E_c^2 \sim \ln(v/v_0)$ [2], особенностью которой является зависимость предельной частоты v_0 (см. Рис.1) от размера верхнего электрода *R*: $v_0 = v_0(R)$. Такие размерные эффекты обусловлены сильной неоднородностью электрического поля у края электрода [3], что является необходимым условием реализации режима докритического роста зародышей переполяризации, и, таким образом, могут быть использованы для оценки вклада докритических процессов в переключение поляризации.

5. Теория размерных эффектов

1. Зависимость предельной частоты $v_0(D)$ обусловлена вкладом

процессов докритического роста зародышей переполяризации у

6. Энергия активации (теория)

Образование тонкого домена у поверхности электрода

2. Закон 1/E_c² – термоактивационное зародышеобразование

Рис.1. Частотная зависимость коэрцитивного поля в поликристаллической пленке $Pb(Zr_{40}Ti_{60})O_3$ [2]

3. Энергия активации для зародышей

область докритического роста

2. Скорость переключения поляризации с учетом вклада процессов докритического роста

$$\dot{P} = 4P^{s}v_{0}\exp\left\{-\frac{\Delta G(E)}{kT}\right\} + \dot{P}^{a}$$

3. Решение основного уравнения для скорости переключения поляризации в случае биполярных импульсов электрического поля Е [3]

$$\dot{P} = 2P^{s}f(D)\delta(t) + 4P^{s}v_{0}\exp\left\{-\frac{\Delta G(E)}{kT}\right\}$$

приводит к перенормировке предельной частоты:

4. Изменение предельной частоты определяется объемной долей материала f(D) < 1, в которой основной вклад в переключение поляризации дают процессы докритического роста зародышей

 $E^{U}(x)$

Рис.4. В однородном электрическом поле (вдали от края

Энергия активации зародыша переполяризации зависит от размера L поверхностного источника

■ Exp [4]

 $-Y_{2}(R)$

 $Y_1(R) = 13.9 + 78.0/R$

 $Y_1(R)$

электрода) равновесный домен является неустойчивым

переполяризации

1. В поликристаллических пленках с монодоменными зернами процесс переключения поляризации контролируется термоактивациионным зарождением зародышей переполяризации [1]. 2. Энергия активации может быть определена из экспериментальных данных по частотной зависимости коэрцитивного поля $E_{c}(v)$

 $\Delta G(E_c) = kT \left(\ln v_0 - \ln v(E_c) \right)$

 $v(E_c) - \phi$ ункция, обратная к $E_c(v)$

3. Экспериментальные значения энергии активации в низкочастотной области. При v(E_c) = 9.3 Hz $\rightarrow E_c$ (v) = 62.5 kV/cm

 $\Delta G(E_c) = 10 \ kT$

4. «Парадокс» Ландауера: при $E_c = 0.5 \text{ kV/cm} \rightarrow \Delta G(E_c) = 10^5 kT$

5. Предельная частота переключения поляризации $v_0 \approx 10^6 \, {\rm Hz}$

4. Размерные эффекты

6. Предельная частота не является только свойством пленки и ее микроструктуры. Она также зависит от геометрии электродов (Рис.2)

7. Механизм докритического роста зародышей переполяризации

Условие докритического роста

зародыша переполяризации

 $-\frac{1}{2}\varepsilon K_E^2(D)l + \gamma l < 0$

 $K_F(D)$ – коэффициент интенсивности

E(x)

8. Резудьтаты и выводы

Предложенный механизм устойчивого докритического роста зародышей переполяризации в поликристаллических пленках позволяет прояснить природу размерных эффектов, проиллюстрированных на Рис.2. В его основе лежит существование физической величины Eg (геометрического коэрцитивного поля), определяющей возможность докритического роста зародышей. Например, для двумерного электрода в форме тонкой полосы ширины *a*, она определяется выражением $Eg = 2(\gamma/\epsilon\pi a)^{1/2}$, где γ – поверхностная энергия доменной стенки. При выполнении условия E < Eg (E - однородное поле вдали)от края электрода) подрастание зародышей до критического размера невозможно.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ «Кристаллография и фотоника» РАН.

9. Литература

Рис.2. Зависимость предельной частоты от диаметра *D* верхнего электрода в поликристаллической пленке $Pb(Zr_{40}Ti_{60})O_3$ [4]

- 1. А.Ю. Белов, Закон " $1/E^2$ " решение нерешенной задачи физики сегнетоэлектриков // Письма в ЖЭТФ, т. 108, вып. 4, с. 225-229, 2018.
- 2. X. Du, I. W. Chen, Frequency Spectra of Fatigue of PZT and other Ferroelectric Thin Films // Mat. Res. Soc. Symp. Proc., Vol. 493, p. 311-316, 1998.
- 3. A.Yu. Belov, Fast polarization reversal in polycrystalline ferroelectric thin films: the origin of size effects // Ferroelectrics, Vol. 544, Issue 1, p. 27-32, 2019.
- 4. S.M. Nam, Y.B. Kil, S. Wada, T. Tsurumi, High frequency measurements of P-E hysteresis curves of PZT thin films // Ferroelectrics, Vol. 259, Issue 1, p. 43-48, 2001.

