
Изотопообогащенные монокристаллы бората железа для применения в качестве монохроматоров в ядерно-резонансных синхротроннных экспериментах

С.В. Ягупов¹, Ю.А. Могиленец¹, М.Б. Стругацкий¹, К.А. Селезнев¹, К.А. Селезнева¹, Н.И. Снегирёв², М.В. Любутина², И.С. Любутин² ¹Физико-технический институт, ФГАОУ ВО «КФУ им. В.И. Вернадского", Симферополь, Россия

²Институт кристаллографии им. А.В. Шубникова, ФНИЦ «Кристаллография и фотоника» РАН, Москва, Россия yagupov@cfuv.ru

Введение

В настоящее время экспериментальные исследования методы материалов, основанные использовании синхротронного высокоинтенсивного излучения, чрезвычайно эффективны и применяются для получения информации о структурных, электронных и магнитных свойствах различных материалов [1]. Монокристаллы бората железа FeBO₃ в этом случае используются в качестве монохроматоров уникальных синхротронного излучения, которые необходимы и широко востребованы для использования в экспериментальных установках на синхротронах третьего и четвертого поколения [1]. Для достижения необходимых ядерной параметров дифракции, такие кристаллымонохроматоры должны быть обогащены по изотопу 57 Fe до 95% [1].

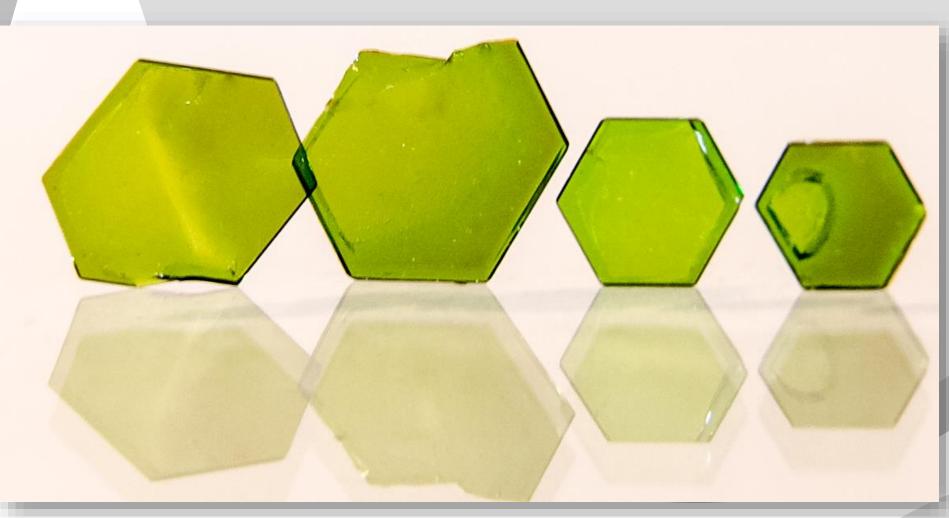
Цель настоящей работы - синтез монокристаллов $^{57}{\rm FeBO}_3$.

- ✓ антиферромагненик со слабым ферромагнтизмом
- ✓ прозрачен в видимой области спектра
- ✓ чувствителен к внешним воздействиям (магнитное поле, давление, свет)
- ✓ температура Нееля (T_N=348К)

Раствор-расплавный синтез

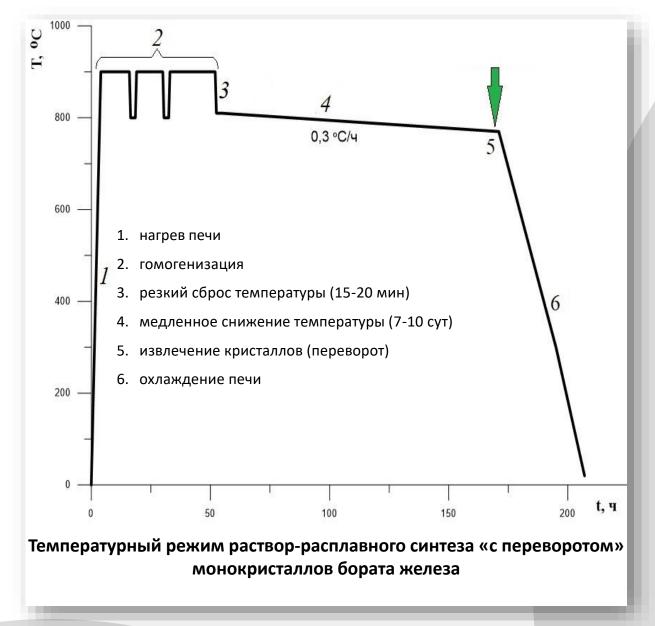
- ✓ в открытом тигле «на затравку»
- ✓ в закрытом тигле «с переворотом»

Обеспечивает получение монокристаллов бората железа высокого структурного совершенства в виде базовых пластин.


Z Fe B O O

Кристаллическая структура FeBO3

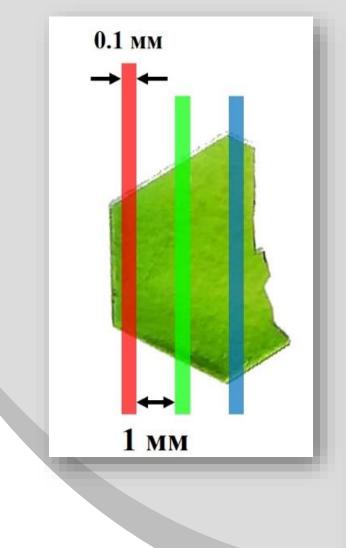
Заключение

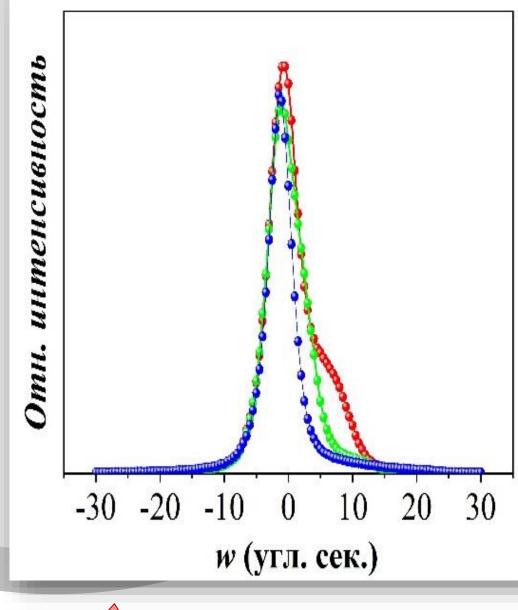

- ✓ В ходе ростовых экспериментов получены пластинчатые монокристаллы размерами до 12 мм в поперечнике и 0.12-0.18 мм толщиной с высокими структурными и ядернодифракционными характеристиками.
- ✓ Подана заявка и получено положительное решение на патент «Способ выращивания монокристаллов $^{57}\text{FeBO}_3$ высокого структурного совершенства».

Работа выполнена при финансовой поддержке РФФИ, проект № 19-29-12016-мк

Результаты

- ✓ Разработан состав исходной шихты $({}^{57}{\rm Fe_2O_3}-4,9$ мас.%, ${\rm B_2O_3}-58,3$ мас.%, ${\rm PbO}-25,0$ мас.%, ${\rm PbF_2}-11,8$ мас.%) и соответствующий ему температурный режим.
- ✓ Рентгенодифракционными методами установлено высокое качество синтезированных монокристаллов, например: на лучших образцах полуширина кривой качания составляет 3.8 4.2 угл. сек. локально в различных участках кристалла и 13.1 угл. сек. при засветке всей поверхности кристалла.




Синтез


Предложенный способ выращивания кристаллов являлся дальнейшим развитием методики, описанной в работе [2].

Его отличительной особенностью является то, что готовую шихту наплавляют в платиновый тигель, на который затем последовательно одевают перфорированную платиновую фольгу и тигель-крышку, тигли завальцовывают, упаковывают в контейнер из огнеупорного кирпича и помещают в ростовую печь.

Преимуществом такого способа является возможность слива высокотемпературного раствор-расплава тигель-крышку до его затвердевания. При перевороте контейнера с тиглями синтезированные образцы остаются на перфорированной фольге, что исключает возникновения механических риск напряжений в кристаллах при охлаждении в раствор-расплаве.

Синтезированные кристаллы і перфорированной фольге

[1] Potapkin V., Chumakov A., Smirnov G. et al., J. Synch. Radiat., DOI: 10.1107/S0909049512015579 [2] Yagupov S., Strugatsky M., Seleznyova K. et al., Cryst. Growth Des., DOI: 10.1021/acs.cgd.8b01128