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Abstract A simple nonlinear model has been proposed to describe the solid state
amorphization by high pressure treatment. The model is based on the deformation field due
to structural defects of the disordered matrix. A solution in the form of a self-sustaining
wave is obtained. The influence of the deformation field parameters on the
amorphization scenario and characteristic correlation length of the amorphous phase
formed by amorphization was studied.
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Introduction
Solid state amorphization (SSA) can be attained by a high pressure treatments [1, 2]. This is

a direct transition from the crystalline into the amorphous state without the necessity of quenching
of a liquid or deposition on a cold substrate. The high-pressure technique is a promising method that
allows to obtain new amorphous materials and solid solutions in the bulk form [3]. During this
process a homogeneous high-pressure phase abruptly looses its stability and a disordered solid is
formed. The different pressure-induced transformations have common features, namely a strong
metastability of the initial state before the start of disordering and a similarity in the short-range
order observed for the low-pressure crystalline phase and the formed disordered phase [4].

The first theoretical interpretation of SSA was based on an empirical model of "cold
melting" [5] and it was rather controversial. In recent years, the considering of the lattice instability
as a driving force for the amorphization becomes one of the most popular approaches [6, 7]. The
molecular dynamics simulation shows a direct connection between amorphization and softening of
the elastic constants [8]. The ab-initio pseudopotential calculations show that amorphization result
from the overlap of disordered regions of defects having energy above a certain threshold,
determined roughly by the difference in energy between the crystal and the amorphous phase [9].
The regions of these defects, called "grey zones", are supposed to be building blocks of amorphous
matter and they are observed in experiments on transition electron microscopy [10]. The "grey
zones" can be identified as "structural forming defects" (SFD), introduced previously in our model
of SSA. A detailed description and the experimental background of our model are given elsewhere
[11].

According to our model [11] SFD act as soft regions in the rigid network, which allow to
vary the angle and distance of bonds adjacent to the SFD [12] and, hence, they are responsible for
the disordering. From this point of view, amorphization is equivalent to the creation of a critical
concentration of such disordered regions. The stationary value of the SFD concentration, N(t),
should define the order parameter of the amorphous matter, namely the medium range order length,
LMRO :

N(t→∞)-1/3 = LMRO .        (1)
Note that at the beginning of the amorphization process the sample is in a strongly metastable
stressed state [13] with energy higher than that of the amorphous state, i. e. far away from
equilibrium. We suppose that this initial state, referred as the excited state [14, 15], is characterized
by the absence of any type of long-range or medium-range order and can be described as a high-
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energy localized vibrational state of the atomic network
[15]. In general, the excess of energy, Qtr, should be equal to
sum of amorphization and crystallization energies: Qtr =
Qcr+Qam. Indeed, the relaxation of the stresses leads to the
fact that the system goes to the nearest available phase,
amorphous or crystalline. In the first case the energy Qam <
Qtr is released and SFD are formed. During a crystallization
process, the energy Qcr is delivered and long-range order is
formed. Hence, and that is the central point of our approach ,
during amorphization the value Qcr should be captured by
SFD, which serve as traps for the energy. Then the SSA
process is equivalent to the decay of the excited state
accompanied by the creation of a noticeable concentration of
the SFD and a finite medium-range order length.

Formalism
Mathematically, the amorphization process can be

described by a system of rate equations for the concentration
N(r, t) and temperature T(r, t) fields [16]. Here we consider
the one-dimensional case and will search for a solution in
the form of a self-sustaining phase transition wave with
velocity v. For the autowave variable ξ=x-vt we can write
the rate equations in the form:
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where y = Nr0
3, θ = kBT, b=r0

3/a3. kB is the Boltzman
constant, DN and DT are the thermal and defect diffusion
coefficients, respectively, c is the specific heat, ρ is the
density and a is lattice parameter. τ0 ≈ a/vph ≈ 10-13 s is a
characteristic transition time and ∆ is the activation energy
of the defect annihilation, that is equal to the activation
energy of crystallization, Ecr. The experimental values
representing the case of a typical semiconductor which
undergoes solid state amorphization by a high pressure
phase retention were taken for modelling [16]. We define
the temperature of the sample after amorphization as θ0 and
choose zero flux boundary conditions for y and θ at ξ → ±∞.
Therefore, no exact values of y(ξ→±∞) are involved.

We assume that the SFD interact via a stress field on
the way to make easier the creation of new defects, as it is
typical for the standard defects in solids [17]. In the mean-
field approximation the corresponding activation energy is

( ) ( ) ( )rnUrrUrUU
i

i ϕϕ 000 −≈−−== ∑ ,       (3)

where U0 is the self-energy of SFD, n0 is the number of
nearest neighbours, 3/1−= Nr  is the average distance
between the SFD and ϕ(r-ri) is the stress field produced by
III International High Pressures Schoo

Figure 1. Stable points of Eqs 2 for
the different parameter s.



III International High Pressures School

215

-5

0

5

10

15 0.45

0.50

0.55

1.0

1.2

Amorphization

Metastable state

T/
T a

δ
ξ/L

0

-5

0

5

10

15 0.45

0.50

0.55

0.0

0.5

1.0

y=
N

r 03

δ
ξ/L

0

Figure 2. Autowave solution for the temperature and
concentration profiles.

the SFD with the number i. A detailed discussion of the choice of the most adequate model potential
ϕ(r) is given in [11]. In the present paper we use the model form

( ) ( )00 / rrr χϕϕ =   with  ( ) ( )63 1/2 xxx +=χ ,                        (4)
where ϕ0 and r0 are the amplitude and radius of interaction between the SFD, respectively.

Using the autowave variable, the Eq. (3) can be written as
( )U y s y( ) ( )/= + − −∆ 1 1 3δ χ ,  (5)

where we introduce the characteristic parameter of the SFD, whose influence we are going to
investigate in this paper , namely δ=(U0-∆)/∆ and s=ϕ0n0/∆. The value of δ settles the difference
between the activation energies for the single act of the SFD creation and the SFD annihilation and,
hence, it characterises the efficiency of the SFD creation. The parameter s controls the intensity of
the interaction between the SFD and, hence, the amplitude of non linearity of Eqs. (2).

Results
We have analysed the stable points of Eqs. (2). The possible structure of the autowave

solution depends strongly on the parameters of the deformation field. If the value s is small (weak
interaction of the SFD, r0 ≈ a), the Eqs. (2) have only one stable point (Fig. 1 a). It corresponds to a
"soft" SSA scenario. The initial
sample contents no structural
forming defects and has a
uniform structure. The efficiency
of the SFD creation is small and
the self-sustaining wave of
amorphization can not exist in
such a system.

The increasing of the
interaction intensity leads to the
appearance of the second and
third roots of the system (Figs. 1
b and c). In this case a phase
transition wave with constant
velocity can spread into the
excited state. It corresponds to a
sort of a jump between the stable
points. According to the basic
assumptions of the model, the
biggest root ymax should be
associated with the amorphous
state having a coherence length
LMRO=r0ymax

-1/3, see Eq. (1). Then
the SSA process follows the
"hard" scenario: the initial
sample must contain a
significant number of defects,
corresponding to the root y1.
Then at the moment of
amorphization, the amorphous
phase with LMRO ≈ r0 develops.
Thus, presence of the defect
regions in an initial crystal
becomes the necessary condition
for the SSA onset. It coincides

L0 = DT /v



III International High Pressures School

216

well with the results obtained by molecular dynamics calculations [9] and with experimental data
[18]. A further increasing of the parameter s induces the growth of y3 = ymax and as a result the
characteristic correlation length of the amorphous matrix, LMRO is reduced (Fig. 1 c).

Typical results for the concentration and temperature profiles are given in Fig. 2.
Interestingly, the change of the parameter δ alters the stationary asymptotic for ξ→±∞. As can be
expected, its growth limits the creation of a new defect and the stable roots are diminished (Fig. 2).
This result supports the proposition that the SSA is essentially a dynamical process. It is worth to
note that in the non-uniform case y(t = 0) = y(r) the hard scenario leads to a bistability of the phase
transition and the other stable autowave solution in the form of an impulse can spread into the
sample. As a result, the sample will in general be a mixture of the amorphous and crystalline
phases. This is precisely the situation observed in SSA of gallium antimonide [19].

As a summary, we have proposed the model of solid state amorphization (SSA), which is
alternative to the semiempirical and first-principal models based on the general approach to the non-
equilibrium phase transition developed before. The model allows taking into account the physical
mechanisms of the SSA process and analysing the influence of different parameters of the
deformation field created by non-homogeneties of the system. Unfortunately, the required
experimental information about these parameters is almost missing, therefore we can only estimate
the possible values of the microscopic characteristics of the SSA, which may lead to the observed
values of the macroscopic parameters of SSA process. Nevertheless even this qualitative approach
predicts the existence of the SSA several scenario and allows to calculate characteristics of the
amorphous phase structure.
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