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1 Introduction

Most important properties of modern materials in high-technology applications are strongly in-
fluenced by the occurrence of interfaces such as grain boundaries (GBs) [1]. In the last decade
the study of nanocrystalline solids has increased considerably. The inherently high con-
centration of GBs in these materials makes the understanding of interface properties of great
importance. Processes that can modify the properties of the GBs affect significantly the bulk be-
havior of polycrystalline materials. Among these processes the GB phase transitions can be
mentioned as important examples [2—7]. In recent times, GB wetting phase transitions have
been included in the traditional equilibrium diagrams of several systems [7-13].

The GB energy, g, plays a critical role for the occurrence of wetting. Figure 1 shows the
contact angle @ formed between a bicrystal and a liquid phase. When 6 is lower than 20y,
where oy is the energy of the solid/liquid interface, the GB is nonwetted and © > 0° (Fig. 1a).
However, the GB is wetted and the contact angle @ = (° if oz 20 (Fig. 1b). Taking into ac-
count the temperature dependences of 65 and 20g; , where the two curves intersect the GB wet-
ting phase transition will take place upon heating (Fig. 1c). The temperature of the intersection
is identified as the wetting temperature, Ty, and for every temperature higher than Ty, the con-
tact angle is © = (°.
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Figure 1: A nonwetted GB in contact with a liquid phase at T < T, @ > 0° (a). A completely wetted GB, @ = 0°,
T = Ty (b). Schematic dependences of ogp(7) and 20y (1) for two different GBs. They intersect at the Ty and
T2 of the GB wetting phase transition (c). L = liquid; S = solid

The superplasticity has drawn much interest in recent years. Usually this property was ob-
served at relatively low strain rates, typically about 107 to 10~ s71. Sometimes it occurs at ex-
tremely high strain rates (up to 10° s}) and in this case it is referred as high-strain rate
superplasticity (HSRS) [14-19]. There is agreement that a small grain size is important for the
occurrence of HSRS. Additionally, this phenomenon has often been observed at temperatures
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close to the matrix solidus temperature [20,21]. The phenomenon of HSRS is most pronounced
in the Al-Mg—7n ternary alloys. The reason for HSRS could be the GB phase transitions.
Therefore, we decided to study the GB phase transitions in the Al-Mg and Al-Zn binary sys-
tems. Recently, the grain boundary wetting phase transition in the two-phase (S+L) region of
the Al-Mg system has been investigated [22]. In this work, the occurrence of prewetting or
premelting was given as the reason for the HSRS. In the present contribution, an analogous
study has been performed for the Al-Zn system.

2 Experimental

Cylindrical samples (diameter 7 mm) of seven Al-Zn alloys with Zn contents of 10, 20, 30, 40,
60, 75 and 85 wt.% were produced from Al (99.999 wt.%) and Zn (99.995 wt.%). Slices (2 mm
thick) of the different alloys were cut and sealed into evacuated silica ampoules with a residual
pressure of approximately 4 - 10 Pa at room temperature. Then, several samples were an-
nealed in furnaces for three days at temperatures between 390 and 630 °C, in steps of 20 °C, and
subsequently quenched in water. The accuracy in the annealing temperature was 1 °C. After
quenching, the specimens were embedded in resin and then mechanically ground and polished,
using 1 um diamond paste in the last polishing step, for the metallographic study. The samples
were then etched and investigated by means of light microscopy.

A quantitative analysis of the wetting transition was performed adopting the following cri-
terion: every GB was considered to be wetted only when a liquid layer had covered the whole
GB; if such a layer appeared to be interrupted, the GB was regarded as a nonwetted GB. Ac-
cordingly, the percentage of wetted GBs was determined on the basis of light microscopy anal-
ysis. At least 100 GBs were analysed at each temperature.

3 Results and Discussion

Figure 2 shows optical micrographs of samples annealed at four different temperatures. As can
be seen almost all the GBs have been covered by a liquid layer after annealing at 620 °C (dark
layers at the original GBs in Fig. 2a). Upon annealing at 560 °C the number of wetted GBs is
considerably lower (Fig. 2b), reaching 66.7 % of the total, whereas in the sample annealed at
480°C this fraction was just 35 % (Fig. 2c). In the samples treated at 440 °C and lower tempera-
tures no GBs were wetted (Fig. 2d). Light gray in the interior of the grain indicates that partial
melting has occurred (Fig. 2b and ¢); however, such a liquid in the solid remains isolated. Pores
(see black spots), probably produced by the rapid quenching, can also be observed. The fraction
of wetted GBs is shown as a function of temperature in Fig. 3a. A gradual increase of this frac-
tion can be observed between 440 and 620 °C from 0 to 100 %. Therefore, the GB wetting pha-
se transition proceeds in the Al-Zn system between 440 and 620 °C. All GB wetting phase
transition tie-lines corresponding to each individual GB lie between these two temperatures. In
other words, the minimal (7,,;,) and maximal (7,,,,) temperatures of GB wetting phase transi-
tion in the Al-Zn system are 440 and 620 °C, respectively. Assuming that the bulk solidus and
bulk liquidus do also hold for the GB phases at their interface, the respective tie-lines at 7,,;,
and 7, have been drawn in the two-phase (S+L) region area of the Al-Zn bulk phase diagram
(Fig. 3b).



L

T T T 700
100 a |
sor 1 & e00
£ gt b _%'
@ 1 &
O @
° awf { g 500
= ]
- [
=
20 - -
400
of 4
i 1 i ' i A "
300 400 500 600 700
T(C) Zn content (at.%)

Figure 3: Temperature dependence of the fraction of wetted GBs in the Al-Zn system (a). Al-Zn equilibrium
phase diagram with the lines of bulk phase transitions [23] and the tie-lines of GB wetting phase transitions (thin
lines) (b)

Taking into account that wetting of GBs has been observed in the bulk (S+L) two-phase re-
gion of the Al-Zn system, it can be suggested that a premelting or prewetting of the GBs may
also take place in the S single-phase region near the bulk solidus line. This kind of GB phase
transitions has extensively been observed for several systems [2-6, 11, 24, 25] and is interpreted
according to the theory developed by Cahn [26, 27]. Due to this phenomenon a thin liquid-like
layer can be formed at the GBs.
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The presence of a liquid layer at the original positions of the GBs will critically affect the
mechanical properties of an alloy, as was observed by Iwasaki et al. in the study of pure shear of
a commercial Al-Mg alloy [28].

In several nanostructured Al ternary alloys and nanostructured Al metal-matrix composites,
containing Zn and Mg, high-strain rate superplasticity has been observed [16-21, 28-32]. The
maximal elongation-to-failure increases drastically from 200-300 % up to 2000-2500 % in a
very narrow temperature interval of about 10 °C just below the respective solidus temperature.
Until now no satisfactory explanation has been offered for this phenomenon.

Due to the fact that the Al-Zn and Al-Mg systems are the basis of multicomponent alloys
which present HSRS, and having observed wetting of GBs for these systems, it is suggested that
GB premelting or prewetting is responsible for the HSRS. In that case, a liquid-like thin layer
would cover the GBs, leading to an enhanced plasticity of the materials. Considering this hy-
pothesis and using results published on HSRS for Al-Zn-Mg alloys, it could be observed that
GB wetting proceeds in multicomponent alloys as well as in binary systems [20,21, 29-32].
From the micrographs published in [20, 21, 29, 30] it was estimated that T, = 535 °C for the
7xxx Al-Mg-Zn alloys (Fig. 4). At 475 °C about 50 % of GBs are still wetted (see Tw50% in
Fig. 4). Unfortunately, the micrographs of the Al-Mg—Zn alloys published in [20, 21, 29, 30] do
not permit us to estimate 7, < T,500, Comparing the 7, values of multicomponent alloys with
those of binary alloys, it seems to be that the presence of third or fourth elements lowers the
wetting temperature. But further investigations must be performed to clarify this tendency.

Finally, most of the HSRS tests were performed at temperatures slightly below the bulk
solidus and the temperature of maximal elongation-to-fracture is also close to the bulk solidus

temperature. Therefore, we conclude that premelting or prewetting can be the reason for the
HSRS in these alloys.
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Figure 4: Pseudobinary phase diagram for 7xxx Al-Zn-Mg alloys (thick lines), containing GB wetting phase
transition lines (thin lines)
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4 Conclusions

Grain boundary wetting has been observed in Al-Zn alloys. On the basis of grain boundary wet-
ting data the maximal and minimal temperatures, T, and T, . of grain boundary wetting
phase transitions have been indicated and the corresponding tie-lines in the two-phase (S + L)
region of the respective bulk phase diagram have been drawn. The occurrence of grain bounda-
ry prewetting or premelting is considered as the origin of high-strain rate superplasticity.
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