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Abstract. The faceting of cylindric tilt grain boundary in Cu bicrystal containing full spectrum of
inclinations has been studied at 0.95 of melting temperature Tm. Both grains form the superlattice
called coincidence site lattice (CSL) with Σ=3. The (100)CSL facet and non-CSL 82°9R facet are
observed. The ratio between GB energy σGB and surface energy σsur was measured by atomic
force microscopy using the GB thermal groove method. The influence of misorientation deviation
∆θ = |θ – θΣ| from coincidence misorientation θΣ

 has been studied. The 3-dimensional Wulff-
Herring diagrams were constructed using measured σGB/σsur values. They reveal that only (100)CSL

and 9R facets correspond to the energy minimum at low Dq. No rough edges between (100)CSL

and 9R facets were observed. It means that Tm is lower than the roughening temperature for
these facets in Cu. With increase of ∆θ, the energy of (100)CSL facet increases.

1. INTRODUCTION

In the case of ordinary coexistence of two bulk
phases a large inclusion of one phase may remain
in stable equilibrium inside of the second phase
(matrix). The average shape of the inclusion is then
determined by strictly thermodynamic consider-
ations based on the free energy minimum for the
creation of necessary interfacial boundary [1, 2]. If
both coexisting phases are isotropic (e.g. fluids),
the shape of the inclusion is spherical. If one or
both are crystalline or otherwise anisotropic, inter-
faces of some orientations are preferred over those
of the other orientations, and the “equilibrium crys-
tal shape” (ECS) of the inclusion is nonspherical
and may be more or less complex. The problem of
ECS was first considered by Wulff [3, 4]. He pro-
posed the following construction (see. Fig. 1). When
interface free energy per unit area f(m) is drawn as
a polar plot (Wulff plot sometimes called γ-plot),
the crystal shape is given as the interior envelope
of the family of perpendicular planes passing through
the end of radius-vectors m f, where m is the unit

outward normal to the interface. Such crystal shape
corresponds to the minimum of the free energy.
Andreev [5] following the approach of Landau [6] first
pointed out in this context that the Wulff construc-
tion is simply the geometrical version of a two-di-
mensional Legendre transformation between the free
energy f(m) and the crystal shape r(h). h is the facet
orientation relative to crystal axes. It means that
knowing the f(m) energy one can reconstruct the
equilibrium crystal shape and vise versa r(h).

Two limiting cases of ECS are completely fac-
eted shapes (polyhedra), consisting entirely of
strictly planar faces (facets) joined at sharp edges,
and completely rounded shapes, which are smoothly
curved everywhere and lack both facets and edges.
It is generally supposed that macroscopic equilib-
rium crystals at temperature T = 0 are completely
faceted (polyhedral). However, at nonzero tempera-
tures curved interfacial regions may appear in addi-
tion to planar facets [2]. The theoretical picture of
the thermal evolution of the equilibrium crystal shape
(ECS) of a typical crystal [1, 2, 7, 8]. As T increases,
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facets shrink and eventually disappear [1] each facet
at its own characteristic roughening (“faceting”) tem-
perature T

R
(h) [7]. At sufficiently high temperature

the ECS becomes everywhere smoothly rounded
(unless, of course, the system first undergoes a
bulk phase change, such as melting). In [2] the ECS
for crystals with cubic lattice were calculated for a
three-dimensional ferromagnetic Ising model with
both nearest-neighbor (J

1
) and next-nearest-neigh-

bor (J
2
 =R J

1
) interactions at nonzero temperatures.

If R > 0 the {100} facet first appear by decreasing
temperature at completely rounded surface. At lower
temperatures facets {110} and than {111} facets have
to appear one after another, also at rounded parts of
the surface. This scenario seems consistent with
the present experimental situation for surfaces, al-
though the difficulty of achieving equilibrium on a
laboratory-feasible time scale imposes severe re-
strictions on the ranges of crystal size and tem-
perature which can be investigated. The experiments
with small droplets of pure Au reveal the presence
of {100} and {111} facets at T = 0.94 T

m
 (T

m
 being

the melting temperature) [9]. Similar measurements
with Pb droplets in the temperature interval from 0.78
to 0.96 T

m
 demonstrated the presence of {100} and

{111} facets [10]. These facets were separated by
smooth regions, facets shrink with increasing tem-
perature, and facet {100} almost disappears. The
hcp 4He was the first system which has been stud-
ied through a sequence of three faceting/roughen-
ing transitions at T

R
 = 1.3, 1.0 and 0.4K into the

everywhere-rounded regime [11, 12]. The in-situ
observation of growth of 3He crystals from the su-
perfluid phase permitted to reveal three roughening
transitions in sequence T

R
 (110) = 0.26-0.34K, T

R

(100) = 0.13-0.17K and T
R
 (211) = 0.087-0.113K [13].

When ECS contains both rounded and faceted
regions joined at edges, these edges may be either
‘sharp’ (slope discontinuity) or ‘smooth’ (no slope
discontinuity). Both sharp and smooth edges have
been seen in experiments, respectively in Au [11]
and Pb [12, 14]. Conventional phase boundaries are
the loci of nonanalyticity of a free-energy surface,
i.e., the set of values of its arguments at which the
free energy is singular. The loci h(T), or T(h), of
nonanalyticity of the crystal-shape function r(h, T)
are the crystal edges. Thus, if the crystal shape is
to be regarded as a free energy, then, correspond-
ingly, the crystal edges should be regarded as phase
boundaries. Thermodynamically, one distinguishes
between first-order phase boundaries, characterized
by discontinuities in one or more first derivatives of
the free energy, and second-order phase boundaries,

characterized by continuous first derivatives. For
crystal shapes, this distinction is between the sharp
edges (as seen for the gold crystals) and the smooth
edges (as seen for the lead crystals). The behavior
of a free energy in the near vicinity of a second-
order phase transition is characterized by critical
singularities, often of power-law type. Therefore, the
shape of a crystal surface near a smooth edge is
described by a power law with an exponent λ. λ
was measured experimentally for Pb (λ = 1.60 ±
0.15 [14]) and 4He (λ = 1.55 ± 0.06 [15]). It is very
close to the critical exponent λ = 3/2 for the so-
called Pokrovsky-Talapov universality class [16].

Later the more complicated phenomena of ECS
were observed both experimentally and theoretically.
Particularly, the coupled compositional and rough-
ening phase transitions in Pb-based alloys were
found [17], the values for the absolute step and kink
energies for lead and other metals [18–23], Si [24,
25] and TiN [26, 27] were obtained, the deviation of
λ from Pokrovsky-Talapov behaviour was observed
[28]. The tricriticality in the orientational phase dia-
gram of Si (113) surface misoriented towards [001]
has been explained by the attractive step-step in-
teraction [29, 30]. Big variety of possible behavior of
facet ridge end points in crystal shapes was pre-
dicted recently with the aid of body-centered solid-
on-solid model with an enhanced uniaxial interac-
tion range [31].

However, up to now mainly the situation was
considered both theoretically and experimentally
when only one phase (namely the ‘inclusion’) is
anisotropic and the second phase is isotropic (gas,
liquid). It corresponds to the case of outer surface
of crystals. What happens when both ‘matrix’ and
‘inclusion’ are crystalline and, therefore, anisotro-
pic? Grain boundaries being the interfaces between
two identical but misoriented lattices represent the
simplest case. Evidently, one important condition
is not valid for grain boundaries (GBs), namely the
volume of ‘inclusion’ is not constant, and the prob-
lem of ECS for isolated GB is similar to those of
slowly growing of slowly diluting crystal. However,
this small trouble is completely compensated by
the rich variety of possible crystallographic features
of GBs. The ECS of isolated grain is governed by
the strong interaction between two crystal lattices
L

1
 and L

2
 of both grains. At certain misorientations

ΨΣ some sites in lattices L
1
 and L

2
 coincide forming

the superlattice called coincidence site lattice (CSL)
[32, 33]. CSL is characterized by the reciprocal
density of coinciding sites Σ. The close-packed
planes in CSL play for GBs the role similar to that of
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close-packed crystal planes for the surfaces. The
height of an elementary step at the close-packed
CSL planes and the length of the Burgers vector of
intrinsic GB dislocations are defined by the displace-
ment shift complete lattice (DSÑ) [34]. DSC is the
inverse lattice for CSL in cubic crystals. The height
of an elementary step at the less close-packed CSL
planes is defined by the so-called grain boundary
shifts lattice (GBSL) [35, 36]. It has been shown
that GBs possess special structure and properties
(including faceting) in certain angular interval ∆Ψ
close to the coincidence misorientations ΨΣ and
below certain temperature T

C
(Σ). T

C
 decrease lin-

early with increasing Σ and exponentially with in-
creasing ∆Ψ [37]. It has been supposed that this
phenomenon is governed by the GB roughening tran-
sition of Pokrovsky-Talapov type [37, 38].

The low-Σ grain boundaries (GBs), Σ being
the inverse density of coincidence sites, and their
faceting play a very important role in the GB engi-
neering, especially in nanocrystalline materials.
Particularly, it has been observed that the number
of faceted GBs decrease with increasing tempera-
ture in various materials like alumina [39], stainless
steel [40], silver [41] and nickel-based superalloys
[42]. The presence of GB faceting correlates in these
materials with the phenomenon of abnormal grain
growth. Above certain temperature the faceted GBs
are absent and the abnormal grain growth does not
appear [39–43]. The influence of the GB faceting is
not occasional, since only so-called special GBs
with misorientation angle θ close to the coincidence

misorientation θΣ 
can facet. Special GBs exist in

certain areas of q and temperature. Particularly, the
maximal temperature where GBs possess their
special structure and properties decreases with in-
creasing Σ [37]. It means that with decreasing tem-
perature the number if special GBs increases, and
the total angular interval for GBs able to facet in-
creases as well. On the other hand, it has been
observed that in certain materials the number of low-
Σ GBs is surprisingly high [44–47]. The number of
low-Σ GBs, exceeds the theoretical value for a ran-
dom polycrystal, derived by Mackenzie [48, 49]. Par-
ticularly the frequency of Σ3 GBs in Ni can reach
almost 30% in Ni in comparison with Mackenzie
value of 6 to 8 % [44]. It has been demonstrated
that the production method, mechanical or thermal
treatment, as well as annealing in magnetic field
can influence the occurrence frequency of low-Σ and
particular that of Σ3 GBs [39, 44, 50, 47]. The high
number of Σ3 GBs in polycrystals can be explained
by the very broad angular interval ∆θ = |θ – θΣ| where
Σ3 GBs possess their special structure and proper-
ties. The data on GB energy measurements in Al
and NiO and on the structural investigations in Al,
Pb and Au deliver the value of as high as 10 to 20°
[51–57]. Therefore, the investigation of faceting of
Σ3 GBs is so important for the GB engineering.

The most natural way to describe the ECS of
GB and its evolution is the construction of Wulff
diagrams. However, the traditionally used two-dimen-
sional Wulff diagrams are not sufficient for the de-
scription of multidimensional space which includes
all GB crystallographic parameters. In this work the
approach is developed for the construction of 3-di-
mensional Wulff diagrams. It has been used for the
Σ3 twin GBs in Cu.

2. EXPERIMENTAL

For the investigation of GB faceting, a cylindrical
Cu bicrystal with an island grain was grown by the
Bridgman technique [58] from Cu of 99.999 wt.%
purity. The interior grain 1 in this bicrystal is sur-
rounded by the exterior grain 2 forming the Σ9 <110>
tilt GB. The {111}

1
/{115}

2
 or (110)Σ9CSL

 inclination of
S9 GB is unstable against the dissociation reac-
tion: Σ9 → Σ3 + Σ3 (the subscripts 1 and 2 corre-
spond to the grains 1 and 2). Therefore, twins (Fig.
2) characterized by well developed Σ3 GBs ?ap-
pear during the growth of bicrystal instead of {111}

1
/

{115}
2
 or (110)Σ9CSL

 facets [59]. The section of Σ3
CSL perpendicular to the {110} tilt axis with position
of (100)

CSL
 and 9R facets is shown in Fig. 2a. On

the other hand, a natural spread in misorientation

Fig. 1. Wulff diagram for the Σ3 Cu tilt GBs with
exact coincidence. φ and φ are angular variables
which measure interfacial orientation (m) and crys-
tal shape (h), respectively.



26                                                                                     B. Straumal, Ya. Kucherinenko and B. Baretzky

angle θ of Σ3 twin GBs is present in the bicrystal.
Two reasons lead to the appearance of this spread.
Firstly, the bicrystals grown by the Bridgman tech-
nique are not completely ideal. The cells misoriented
in low-angles are always present in the single- and
bycrystals due to the instability of growth process.
Secondly, the misorientation between seeds 1 and
2 is not exactly Σ9. The multiple twin embrions ap-
pear during growth in different locations of (110)Σ9CSL

facets leading to the q spread. Since GB energy
and q can be measured rather exact and very lo-
cally, this natural spread (about 1°) was used to
investigate the misorientation influence on the GB
faceting of Σ3 twin GBs.

2.5 mm thick platelets were cut from the grown
bycrystal perpendicularly to the growth axis. The
platelets were ground with 4000 SiC paper and pol-
ished with 3 and 1 µm diamond paste. After that
they were annealed in 80% Ar + 20% H

2
 gas mix-

ture (purity of gases is 99.999%) at pressure of 2.104

Pa at different temperatures 1293K, 48 h. During
the annealing the GB migrates slowly (10–10–10–13

m/s) under the action of capillary driving force. The
GB migration permits the facets to develop which
are in equilibrium at the respective annealing tem-
perature. The annealed samples were than etched
in the 50% HNO

3
 aqueous solution. The GB shape

was photographed in polarized light in bright and
dark field with the aid of an Zeiss Axiophot optical
microscope. The sample annealed at 1293K was
then carefully repolished and annealed 48 h once
again in order to form GB thermal grooves. The pro-
files of the formed GB thermal groove were analysed

Fig. 2. Micrograph of multiple twins between grain
1 and grain 2 with  Σ9 misorientation. Common [110]
axis is perpendicular to the micrograph plane.

with the aid of the Topometrix 2000 Explorer atomic
force microscope (AFM) operating in the contact
mode. The typical field analyzed with the aid of AFM
had a dimension 50´50 mm containing 500´500 pix-
els. For the analysis, each 10 neighbouring profiles
were used to obtain a mean GB groove profile. The
ratio between GB energy σ

GB
 and surface energy σ

sur

was calculated from the relation σ
GB

= 2σ
sur

cos(α/2)
using the values of measured GB groove angles a
[60]. For the determination of the groove angle not
only the groove tip but the full groove profile was
used [61]. Two sides of the groove profile were ap-
proximated separately beginning from the maximum
on the groove profile. As it was demonstrated previ-
ously, the finite radius of the AFM needle does not
allow to measure correctly the profile close to the
tip of the groove [60, 61]. Therefore, the approxi-
mated ‘left’ and ‘right’ halves of the groove profile
were extrapolated down to their intersection point.
This procedure allows to determine the coordinates
of the ‘true’ groove tip which is positioned lower than
the tip observed by the AFM. Local misorientation
was determined in the same locations as GB en-
ergy by scanning electron microscopy (SEM) with
the aid of electron backscattering diffraction patterns
(EBSD). The orientation was determined with a com-
mercially available system (OIMTM, by TSL) capable
of automatic pattern indexing. The accuracy in
misorientation determination was about 0.5°.

3. RESULTS AND DISCUSSION

At T = 1293K = 0.95 T
m
 (i.e. very close to the melt-

ing temperature) Σ3 GB contains two facets. The
scheme for crystallography of both facets is shown
in Fig. 3a. The energy of symmetric Σ3 twin ({111}

1
/

{111}
2
 or (100)Σ3CSL

 facet) is very low. The second
close packed plane is {211}

1
/{211}

2
 or (010)

CSL
 facet,

the so-called asymmetric twin. The angle between
facets (100)

CSL
 and (010)

CSL
 is 90°. The presence of

such facets are well documented for Al, Au, AuCu
3
,

and Ge [62–65]. The typical rectangular twin plates
with (100)

CSL
 and (010)

CSL
 facets can be seen, for

example in Au thin films [19]. However, the twin plates
in Cu and Ag are not rectangular. The end facet
forms an angle of 82° with the {111}

1
/{111}

2
 or (100)

CSL

sides [58, 65]. TEM studies revealed that this 82°
facet has so-called 9R structure forming a plate of
bcc GB phase in the fcc matrix [66–68]. Such
(100)

CSL
 and 82° 9R facets on the Σ3 twin plate are

clearly seen also in our samples in Fig. 2. EBSD
measurements were performed in order to determine
the deviation from the exact coincidence
misorientation of Σ3 <110> tilt GB in Cu. The mea-
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Fig. 3. (a) Section of Σ3 CSL perpendicular to the {110} tilt axis with position of (100)
CSL

 and 9R facets and
(b) micrograph of intersection of (100)

CSL
 and 9R facets, 1293K.

��

��

surements were made in different locations on the
Cu sample. The maximal measured ∆θ is only about
1°. The maximal reported ∆θ for Σ3 is about 10-20°
[51, 55]. At ∆θ below 10° twin GBs still conserve
their special structure and properties [51–57]. The
resulting dependence of σ

GB
 /σ

sur
 ratio on deviation

from the Σ3 coincidence misorientation ∆θ for the
9R facet and (100)

CSL
 facet have been shown in Fig.

4. The σ
GB

 /σ
sur

 ratio for the (100)
CSL

 facet increases
almost linearly from the very low value of 0.02 close
to coincidence misorientation to 0.05. The σ

GB
 /σ

sur

ratio for the 9R facet is much higher and fluctuates
around value of 0.21.

In order to construct the 3-dimensional Wulff dia-
grams the data on inclination dependence of en-
ergy of Σ3 GBs in Cu obtained for the <110> and
<211> tilt axes were used [62–64] together with data
shown in Fig. 4. It was supposed that the energies
for zero inclinations and zero deviation from the Σ3
coincidence misorientation are equal for all three
cases. In Fig. 5 the 3-dimensional Wulff diagram is
shown which is constructed for zero deviation from
the Σ3 coincidence misorientation using the data
[62–64]. The very low energy of coherent (100)

CSL

facets (thin central ‘needle’ on the Wulff plot) deter-
mine the platelet-like shape of twins in Cu (Fig. 1).
It can be seen that with increasing ∆θ the energy of
symmetric twin increases, Wulff’s diagram changes
and becomes more ‘spherical’. It means that by fur-
ther increase of ∆θ the transition from faceted to
rough GB can occur, similar to that proceeding with
increasing temperature. The metastable nature of

the minor CSL facets is clearly seen in Figs. 5b
and 6. The presence of the minor CSL facets in the
sample reveal the existence of the energetic minima
on the Wulff-Herring plot. It follows from Figs. 5b
and 6, that these minima are not deep enough to
allow the corresponding facets to be stable if the
(100)

CSL
 facets have low energy.

Fig. 4. Dependence of  σ
GB

 /σ
sur

 ratio on deviation
from the Σ3 coincidence misorientation for the 9R
facet (top) and (100)

CSL
 facet (bottom).



28 B. Straumal, Ya. Kucherinenko and B. Baretzky

The observed (100)
CSL

 / 82°9R edges of the twin
plates are sharp. AFM reveals only minor rounding
in the area with dimension less than 1 mm. It has
been shown by Landau and Marchenko that the in-
tersections of facets cannot be ideally sharp even
well below the T

R
 [6, 69]. In other words, the rough-

ening temperature T
R
 for (100)

CSL
 and 9R facets is

higher than the melting temperature T
m
. By decreas-

ing temperature new facets may appear in ECS of
Σ3 GB [59]. All observed edges between facets are
sharp. It means that the new facets appear not at
the rough rounded GB like surface facets in Pb, Au
or He [11–15] but at the sharp degenerated edges
between existing facets. In other words, the true

�� ��

��

Fig. 5. 3-dimensional Wulff plots for zero deviations
from the Σ3 coincidence misorientation ∆θ =0 (a)
with experimental points from [62–64], (b) without
experimental points, (c) section of the Wulff plot.

roughening temperature T
R
 is higher that the tem-

perature T
Rf

 when a less densely packed CSL facet
really appears in ECS. In our case the role of de-
creasing temperature plays the increasing ∆θ. By
increase of ∆θ the metastable minimum (210)

CSL

becomes stable. Such behaviour corresponds to the
behaviour of areas of existence of special GBs [37,
43]. By decreasing temperature the areas of exist-
ence of special GBs become broader.

4. CONCLUSIONS

1. The cylindric tilt Σ3 GB in Cu bicrystal containing
full spectrum of inclinations becomes fateted at
0.95 T

m
.

2. The (100)CSL, (210)CSL, (130)CSL facets and non-
CSL 82°9R facet are observed.

3. No rough edges between (100)
CSL

 and 9R facets
were observed. It means that T

m
 is lower than

the roughening temperature for these facets in
Cu.

4. The ratio between GB energy σGB and surface
energy σ

sur
 was measured by atomic force mi-

croscopy using the GB thermal groove method.
The influence of misorientation deviation ∆θ = |θ
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�� ��

�� ��

Fig. 6. The sections of 3-dimensional Wulff plots for different deviations from the Σ3 coincidence misorientation
(a) ∆θ=0º, (b) ∆θ=0.4º, (c) ∆θ=0.8º and (d) ∆θ=0.98º.

– θΣ| from coincidence misorientation θΣ has been
studied. The 3-dimensional Wulff-Herring dia-
grams were constructed using measured σ

GB
 /

σ
sur

 values.
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313-dimensional wulff diagrams for Σ3 grain boundaries in Cu
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