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Abstract. Diffusional growth of the grain boundary (GB) groove permits one to measure the ratio 

between GB energy σGB and surface energy σsur. The faceting of twin tilt grain boundaries in Cu 

has been studied using the GB thermal groove method. No rough facet edges were observed. It 

means that melting temperature is lower than the roughening temperature for the observed facets in 

Cu. The influence of orientation and misorientation deviation ∆θ = θ – θΣ from coincidence 

misorientation θΣ has been studied. By increase of ∆θ the energy of (100)CSL facet increases. The 

convenient method for construction 3D three-dimensional Wulff diagrams was found. The 3-

dimensional Wulff diagrams were constructed using this method and measured σGB / σsur values. 

Introduction 

The Wulff diagram is the set of ends of radius-vectors, which are perpendicular to all possible (and 

virtual) faces of a crystal. The length of each vector is equal to surface energy of the corresponding 

face of a crystal (Fig. 1). This diagram can be called “polar” in two-dimensional case, and 

“spherical” in three-dimensional cases. Similarly to the Wulff diagrams for the free surface of a 

crystal, it is possible to consider Wulff diagrams for grain boundaries (GBs). In GB cases one has to 

assume that the misorientation of both grains forming a GB is fixed, and the orientation 

(inclination) of a flat GB can vary. To different misorientations of a GB correspond different Wulff 

diagrams. 

  

Fig. 1. Definition of a Wulff diagram. For an arbitrary 

plane p we consider the end of its surface energy 

vector. The Wulff diagram is a set of such points, 

constructed for all plane orientations. 

Fig. 2. Construction of equilibrium crystal 

shape from Wulff diagram by envelope 

planes. 
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Fig. 3a. One face of a crystal is composed of 

steps of more stable faces. 

Fig. 3b. Function of surface energy for a two-

dimensional square crystal γγγγ=|cosϕϕϕϕ|+|sinϕϕϕϕ|. 

Wulff diagrams not only allow to find a surface energy for any crystal faces, but also make possible 

to construct an equilibrium crystal shape (ECS). Landau has shown, that the ECS is an intersection 

of half-subspaces, bounded by envelope planes (Fig. 2) [1]. Studying of energy diagrams was begun 

by works of P. Ehrenfest and G. Wulff [2, 3] and continued by C. Herring [4]. Ehrenfest has proved 

an opportunity of occurrence of such faces in real crystals, which deviate from the most stable 

planes insignificantly. He has shown it using an example of a two-dimensional tetragonal crystal. 

Ehrenfest has deduced function of surface energy of such crystal (Fig. 3b), assuming that faces of 

less favorable directions are formed by steps of more stable ones (Fig. 4a).  

   

Fig. 4a. One face of crystal is composed 

of steps of more stable faces. Oblique-

angled case. 

Fig. 4b. Function of 

surface energy for a 

trigonal crystal. 

Fig. 4c. Wulff diagram of 

surface energy for a three-

dimensional cubic crystal. 

As a result, the function of surface energy in polar coordinates is a hull enveloping four circles. 

Each of these four circles passes through the origin of coordinates. The envelope consists of four 

circlular arcs. If a crystal face slightly deviates from the most favorable orientation, its energy 

deviates also slightly from the respective energy. Wulff [2, 3] has generalized a design offered 

earlier by Ehrenfest for crystals of any syngony (Fig. 4a), including a three-dimensional case. The 

result is rather similar to the previous one: function of surface energy in polar (spherical) 

coordinates is a hull enveloping some circles (Fig. 4b) or spheres (Fig. 4c) which includes origin of 

coordinates. 

Method for constructing Wulff diagrams 

The method developed in this work is based on an important property of geometric transformation, 

inversion in a circle or sphere (Fig. 5a). Circles (or spheres) including the origin of coordinates are 

transformed by inversion into straight lines (planes) (Fig. 5b). A Wulff diagram consisting of 

fragments of circles (or spheres) is transformed, respectively, into a convex polygon (or 

polyhedron) (Fig. 5c). Convexity of a polyhedron follows from a simple physical reason: if a 

polyhedron would be not convex, it would have re-entrant corners, and the Wulff diagram would 

have a maximum at a point of crossing of corresponding arcs of circles, while there should be a 

minimum. 
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Fig. 5a. Definition of inversion 

in a circle (sphere): the point 

having distance x from the 

origin passes into a point x', 

lying on the same straight line. 

Fig. 5b. Property of inversion: a circle 

transforms into a circle. However, a 

circle which includes the origin of 

coordinates, transforms into a straight 

line (i.e. a circle with an infinite radius). 

Fig. 5c. The Wulff 

diagram, consisting of 

three circular 

fragments, passes into 

triangle. 

We propose the following method for the construction of Wulff diagrams. Step 1. One constructs 

the radius vectors normal to all stable faces of a crystal. The lengths of these vectors correspond to 

the surface energies (Fig. 6a). Step 2. The inversion transformation in a circle (sphere) is applied to 

the set of points received in the Step 1 (Fig. 6b). If the transformation sphere is of unit radius R = 1, 

the radius vectors σ are transformed into inverse ones 1/ σ. Step 3. The convex hull of the received 

set of points are calculated. Result will be a convex polyhedron (Fig. 6c). Step 4. The inversion 

transformation is applied to the convex polyhedron obtained in the Step 3 in a same sphere as in the 

Step 2. The result is a Wulff diagram. 

(a)           Step 1 

 

(b)             Step 2 (c)              Step 3 (d)             Step 4 

Fig. 6. Construction of Wulff diagram. 

It is possible to construct Wulff diagrams for grain boundary energy in a similar manner to the 

surface energy, including the cases of slight deviations from equilibrium. But for these cases, the 

technique of construction of diagrams should be modified by lengthening of initial set of vectors on 

some fitting parameter rc (which is independent on orientation) and subtraction of same constant 

from all radius-vectors of spherical diagram at the final stage. Such modification allows to receive 

functions on sphere with higher variations of values. Stages of modified method for construction of 

Wulff diagram are shown in Fig. 7: 

(a)                1  (b)                2  (c)                 3  (d)                 4 
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Fig.7. Modified method for the construction of Wulff diagram. 
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Experimental 

Experiments on preparation of samples and measurement of grain boundary energy are described in 

[4]. Two series of Σ3 bicrystals corresponding to the tilt GBs with inclinations <110>φ=0..90° and 

<211>φ=0..90° were prepared by diffusion bonding (Σ is the inverse density of coincidence sites). 

A cylindrical Cu bicrystal with coaxial grains was also grown. A natural spread in misorientation 

angle θ of Σ3 twin GBs is present in this bicrystal permitting to investigate the shape of Wulff 

diagram at various θ. The profiles of the formed GB thermal groove were analyzed by atomic force 

microscope (AFM) after annealing at T = 1293 K = 0.95 Tm (Tm is melting temperature). Mullins 

solution for the diffusion-controlled groove growth has been used for fitting of experimental profile 

and determination of the ratio between GB energy σGB and surface energy σsur. 

Results and discussion 

No rough facet edges were observed in both sets of experiments at 0.95 Tm. It means that Tm is 

lower than the roughening temperature for the observed facets in Cu. Molecular statics calculations 

for surface energy of faces (110) and (211) which were represented in [5], have allowed to compare 

two data series of Fig. 8, to represent them on three dimensional spherical diagram (Fig. 9), and to 

apply the modified method of constructing Wulff diagrams. The optimal values of rc were 3.0 J/m
2
 

for simulated data and 1.0 J/m
2
 for experimental data.  

  

Fig. 8. Dependence of the σGB / σsur ratio on inclination φ for the <110> and <211> tilt Σ3 GBs (a) 

thermal groove experiments (b) molecular statics calculations. 

 

 

 

 

Fig. 9. Three-

dimensional Wulff 

diagrams for grain 

boundaries Σ3 in 

Cu obtained using 

the experimental 

data from Fig. 8 for 

two orthogonal 

misorientation axes 

<110> and <211>. 
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Three-dimensional Wulff diagrams for grain boundaries Cu Σ3 and their comparison with 

experimental data are represented in Fig. 9. Further we not consider this point and concurrence was 

improved. At 0.95 Tm Σ3 GB contains two facets, namely symmetric twin at φ=0° and 9R facet at 

φ=82°. 9R facet does not coincide with any densely packed plane of coincidence sites lattice Σ3.  

 

 

 

In Fig. 10 the influence of misorientation deviation ∆θ = 

θ – θΣ from coincidence misorientation θΣ3 on the 

σGB / σsur ratio is shown. It can be seen that with 

increasing ∆θ the energy of symmetric twin linearly 

increases, and σGB for 9R does not change significantly. 

The data on the ∆θ influence have allowed to see the 

character of change of shape of Wulff diagram (Fig. 11). 

 

 

 

Fig. 10. Dependence of the σGB / σsur ratio on 

misorientation deviation ∆θ for symmetric twin and 9R 

facet. Large points represent interpolated values used for 

the calculation of Wulff diagrams (Fig. 11). 

 

 

The 3-dimensional Wulff diagram have been constructed for different ∆θ. Externally, they are 

almost indistinguishable (Fig. 11). The data shown in Fig. 10 were used to deform the curves for the 

∆θ = 0 (Fig. 8). Figs 12a to 12c demonstrate the result of this fitting. In Figs 12d to 12f the sections 

of the resulted 3-dimensional Wulff diagrams are shown. These sections allow one to see the main 

difference in the shape of Wulff diagrams with increasing ∆θ. The very low energy of coherent twin 

facets (thin central “needle” on the Wulff plot) determine the platelet-like shape of twins in Cu. It 

can be seen that with increasing ∆θ the energy of symmetric twin increases, “central needle” 

shortens, Wulff’s diagram changes and becomes more “spherical”. It means that by further increase 

of ∆θ the transition from faceted to rough GB can occur, similar to that proceeding with increasing 

temperature. 
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Fig. 11. All Wulff diagrams which have been 

constructed using experimental data on the ∆θ  

dependence are externally indistinguishable. 

 

 

 

 

 

(a)                 ∆θ = 0° (b)              ∆θ = 0.4° (c)                 ∆θ = 0.8° 
 γb, J/m

2
 

 
Inclination angle, deg 

 

(d)                 ∆θ = 0° (e)              ∆θ = 0.4° (f)                 ∆θ = 0.8° 

Fig. 12. Dependence of Wulff diagram from deviation from Σ3. (a) to (c) Inclination dependences 

of σGB / σsur ratio for different ∆θ values. (d) to (f) Sections of Wulff diagram by the (111) plane 

for different ∆θ values. With increasing deviation ∆θ the energy minimum of a facet (111) (central 

needle) becomes less and less deep. 
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