“СМАЧИВАНИЕ” ГРАНИЦ ЗЕРЕН ВТОРОЙ ТВЕРДОЙ ФАЗОЙ В ПОЛИКРИСТАЛЛАХ Zn–Al И БИКРИСТАЛЛАХ Zn РАСТВОРОМ НА ОСНОВЕ Al

© 2005 г. Б. Б. Страунал1, А. С. Горнакова1, Г. Лопес2

Исследована микроструктура поликристаллов Zn–5 вес. % Al в температурном интервале от 250 до 375°C. Извлена также структура прослоек фазы (Al) на индивидуальных границах зерен (ГЗ) в бикристаллах Zn. Было экспериментально показано, что в зависимости от температуры отжига и энергии ГЗ вторая твердая фаза (Al) образует на ГЗ в (Zn) либо цепочку отдельных линзоподобных включений, либо нерепрыйнные однородные прослояки. Следовательно, в силу Zn–Al происходит фазовый переход "смачивания твердой фазой" на ГЗ. С точки зрения термодинамики, этот переход подобен фазовому переходу смачивания ГЗ жидкой фазой. На обычной фазовой диаграмме Zn–Al для объемных фаз построена кривая зернограничного фазового перехода "смачивания твердой фазой".

ВВЕДЕНИЕ

В научной литературе можно найти множество свидетельств, что вторая твердая фаза может формировать слои, полностью покрывающие границы зерен (ГЗ) в матрице. Вот всего лишь несколько наиболее важных примеров: слои Fe,C в сталях на ГЗ в феррите и аустените [1, 2], слои Cu на ГЗ в спеченных поликристаллах W [3–8], слои β-(Zr, Nb) на ГЗ в α-Zr [9] или слои висмута на ГЗ в меди [10]. Недавно были обнаружены такие называемые фазовые переходы смачивания ГЗ жидкой фазой [11–24]. Выше температуры такого фазового превращения все границы зерен в поликристалле не могут существовать в равновесном контакте с жидкой фазой (расплавом). В результате прослоек расплава отделяют друг от друга кристаллы твердой фазы. Зернограничные фазовые переходы смачивания жидкой фазой определяют такие явления, как формирование микроструктуры при пайке, сварке, жидкокристаллическом свечении, тиксотропным литым, деформации двуфазных сплавов и т.д. Непрерывные зернограничные слои второй фазы в сплавах могут быть как нежелательными (например, в случае окружения ГЗ в сплавах Cu–Bi), так и полезными (например, слои Cu, обеспечивающие пластичность поликристаллов W). Построение концентрационных грануламерных переходов на объемных фазовых диаграммах позволит предсказывать и контролировать описанные выше явления.

Рассмотрим состояние термодинамического равновесия двухфазного поликристалла. В нем возможны два типа морфологии частиц второй фазы на ГЗ.

1. Энергия ГЗ $\sigma_{\text{ГЗ}}^{\alpha\alpha}$ в α-матрице ниже, чем энергия $2\sigma_{\text{ГЗ}}^{\alpha\beta}$ двух межфазных границ раздела (МФГ) α/β между растущей β-частицей и α-матрицей (рис. 1a). В этом случае растущая β-частица имеет линзовидную форму и формирует равновесный контактный угол θ вдоль контактной линии между МФГ и ГЗ. Значение θ задается условиями механического равновесия $\sigma_{\text{ГЗ}}^{\alpha\alpha} = 2\sigma_{\text{ГЗ}}^{\alpha\beta} \cos(\theta/2)$.

2. Если $\sigma_{\text{ГЗ}}^{\alpha\alpha} > 2\sigma_{\text{ГЗ}}^{\alpha\beta}$, то в этом случае ГЗ α/α нестабильна в контакте с растущей β-фазой, и равновесный контактный угол $\theta = 0$. В результате ГЗ α/α и заменяется на нерепрыйнный слой β-фазой (рис. 1b).

Ситуация с полным или неполным смачиванием ГЗ слоем второй твердой фазы подобна недавно хорошо изученному фазовому переходу смачивания ГЗ жидкой фазой [11–24]. Если энергия ГЗ $\sigma_{\text{ГЗ}}^{\alpha\alpha}$ ниже, чем энергия двух поверхностей раздела твердой и жидкой фаз $2\sigma_{\text{ГЗ}}^{\alpha\beta}$, то ГЗ смочена не полностью, и контактный угол $\theta > 0$ (рис. 1b). Если $\sigma_{\text{ГЗ}}^{\alpha\alpha} > 2\sigma_{\text{ГЗ}}^{\alpha\beta}$, то ГЗ полностью смочена жидкой фазой и $\theta = 0$ (рис. 1b). Контактный угол θ постепенно уменьшается с ростом температуры до $\theta = 0$ при T_m. Выше T_m контактный угол остается $\theta = 0$ (рис. 1b).

1 Институт физики твердого тела Российской академии наук, Черноголовка.
2 Институт металлолювдения общества им. Макса Планка, Штутгарт, Германия.
Если температурные зависимости $\sigma_{\alpha\alpha}^{\alpha\alpha}(T)$ и $2\sigma_{\alpha\beta}^{\alpha}(T)$ пересекаются, то при температуре их пересечения T_w осуществляется фазовый переход смачивания Г3. В двухфазной области $(\alpha + L)$ объемной фазовой диаграммы (рис. 1а) появляется кондона фазового перехода смачивания при T_w. Выше этой конды Г3 с энергией $\sigma_{\alpha\alpha}^{\alpha\alpha}$ не могут существовать в равновесии с жидкой фазой. Жидкая фаза отделяет зерна твердой фазы друг от друга. В поликристалле существует целый спектр Г3 с различными энергиями, поэтому в поликристаллах существуют максимальная $T_{w\max}$ и минимальная $T_{w\min}$ температуры для Г3 с минимальной и максимальной энергией $\sigma_{\alpha\alpha}^{\alpha\alpha}$ и $\sigma_{\alpha\alpha}^{\alpha\alpha}$ соответственно.

На объемных фазовых диаграммах Al–Mg, Al–Zn и Al–Sn были экспериментально построены конды для $T_{w\max}$ и $T_{w\min}$ [16, 22–24]. Выше $T_{w\max}$ все Г3 полностью смочены. Ниже $T_{w\min}$ в поликристалле нет полностью смоченных границ, и распад имеет форму отдельных включений. В температурном интервале между $T_{w\max}$ и $T_{w\min}$ только часть Г3 смочена жидкой фазой. С увеличением температуры от $T_{w\min}$ до $T_{w\max}$ доля смоченных Г3 увеличивается от 0 до 100% при $T_{w\max}$ [10, 22–24]. Из термодинамического подобия между обычным смачиванием Г3 жидкой фазой и "смачиванием" (обволакиванием) Г3 твердой фазой следует:

a) переход с увеличением температуры от Г3, не полностью "смоченной" второй твердой фазой, к полностью смоченной Г3 (при некоторой температуре T_w);

b) зависимость T_w от энергии Г3 (низкая T_w для высокой $\sigma_{\alpha\alpha}^{\alpha\alpha}$ и наоборот);

c) появление между $T_{w\max}$ и $T_{w\min}$ новых конд фазовых переходов Г3 "смачивания твердой фазой" в двухфазной области $\alpha + \beta$ обычных объемных фазовых диаграмм, где в равновесии существуют две твердые фазы α и β;

d) увеличение доли Г3, "смоченных" твердой фазой, от 0 до 100% с ростом температуры от $T_{w\min}$ до $T_{w\max}$.

Для наблюдения мы выбрали систему Zn–Al, которая интересна тем, что в ней в одной из первых наблюдалось явление сверхпластичности. После исследований на поликристаллах было решено продолжить изучение фазового перехода смачивания на индивидуальных Г3.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Сплав Zn–5 вес.% Al был приготовлен методом индукционного плавления в вакууме ($P = 10^{3}$ Па), из высокочистых Zn (99,999 вес.%) и Al (99,9995 вес.%). Из стержня сплава диаметром 9 мм были нарезаны диски толщиной 2 мм. Поликристаллические образцы затем запаивались в откачанные кварцевые ампулы ($P < 4 \times 10^{-4}$ Па) и отжигались в температурном интервале между 250 и 375°C в течение 336, 672 и 2016 ч (см. рис. 2).

Бикристаллы Zn с симметричными границами наклона [1120] с углами разориентации 46° и 84° были выращены из Zn чистотой 99,999 вес.%, методом направленной кристаллизации. Ориентация монокристаллических затравок и разориентация границ в бикристаллах контролировались оптическим методом. Для этого монок- и бикристаллические образцы раскаливались в жидкости азоте по базисным плоскостям (1000). Для экспериментов по смачиванию бикристаллические образцы покрывались слоем (Al). Затем запаивали в откаченные кварцевые ампулы ($P < 4 \times 10^{-4}$ Па) и отжигали около 30 мин при 415°C. Эта температура была выше температуры фазового перехода смачивания Г3 в Zn. В результате на Г3 Zn формиро-
вался непрерывный слой фазы (Al). Кварцевые ампулы затем охлаждались на воздухе. Затем би кристаллы Zn с ГЭ, покрытым слоем фазы (Al) еще раз отжигались при 230° и 290°С в течение 480 ч.

![Diagram](image)

Рис. 2. Равновесная фазовая диаграмма Zn–Al [25]. Точками отмечены температуры отжига сплава Zn–5 вес.% Al. Тонкая горизонтальная линия при $T_{\text{пред}}$ 290°С обозначает минимальную температуру “смачивания” ГЭ Zn/Zn фазой (Al).

После закалки в воду микроструктура поли кристаллических и бикристаллических образцов исследовали с помощью оптической и сканирую щей электронной микроскопии. Предварительно образцы механически полировали и травили в рас творе $\text{C}_2\text{H}_5\text{OH} + 3\% \text{HCl}$ (15 с). Чтобы подтвердить присутствие различных фаз, образцы исследовали на рентгеновском дифрактометре SIEMENS-500 с графитовым монохроматором. Было использован о CuKα-излучение. Микрорентгеноспектраль ный анализ концентрации Zn и Al был проведен на приборе JEOL 6400 при ускоряющем напряжении 15 кВ. Были получены линейные профили концен трации с шагом от 1 до 5 мкм.

2. РЕЗУЛЬТАТЫ

На рис. 3b представлена микроструктура спла ва Zn–5 вес.% Al после затвердевания и охлаждения. Эта структура представляет исходное состояние наших образцов перед длительными отжигами для исследований фазового перехода “смачивания” (обволакивания) ГЭ второй твердой фазой. Эта микроструктура содержит эвтектические колонии (Al) и (Zn), ламели которых формируются при эвтектической температуре $T_a = 381°С$ во вре мя затвердевания. В бикристаллах такая эвтектическая смесь фаз замечается при охлаждении слой фазы (Al) на Zn ГЭ, который был отожжен при температуре отжига 415°С (рис. 3a). Поскольку состав исследуемого сплава очень близок к эвтек тическому, первичные кристаллы фаз (Al) и (Zn) отсутствуют в микроструктуре поликристалла Zn–5 вес.% Al. Объемная доля фазы (Zn) в эвтек тике больше, чем фазы (Al), в соответствии с фазовой диаграммой и плотностью обеих фаз, поэтому каждую эвтектическую колонию можно рассматривать как зерно (Zn), содержащее ламели (Al). Соседние эвтектические колонии образуют границы зерен (Zn)/(Zn). Границы колоний (Al)/(Al) не наблюдались в исходной структуре. Границы зерен (Al)/(Al) присутствуют в исходной структуре только в отдельных точках контакта ламелей (Al) из соседних эвтектических колоний. Для наших исследований существенно, что ламели (Al) в каждой колонии (т.e. в зерне (Zn)) начинались (или заканчивались) на границах между колониями (т.e. ГЭ (Zn)/(Zn)) независимо от ламелей (Al) в соседней колонии. В исходной структуре на границах зерен (Zn)/(Zn) нет ни непрерывных слоев (Al), ни целого части (Al) (рис. 3b). Ламели (Al) подходят к ГЭ (Zn)/(Zn) из соседних эвтектических колоний и заканчиваются на ней. При охлаждении до комнатной температуры в ламелях (Al) при $T_m = 277°С$ происходит второе (монотектоидное) превращение. Твердый раствор (Al) с содержанием Al около 18 вес. % разлагается на два твердых раствора (Al) и (Al)$^\prime$ с содержанием Al 22 и 35 вес.%. На рис. 4a и 5a можно увидеть эту тонкую структуру в эвтектической ламели (Al).
В результате последующих длительных отжигов при температурах между 250 и 375°С наследняя микроструктура изменяется. На рис. 4 представлена типичная микроструктура сплавов Zn–5 вес.% Al, отожженных в течение 2160 ч при 375°С (рис. 4а) и при 275°С (рис. 4б). Во всех образцах ламели (Al) в объеме "отступают" от границ колоний (Zn)/(Zn), утолщаются и разбиваются на части. Эти частицы затем сфероидизируются. На ГЗ (Zn)/(Zn), первоначально свободных от фазы (Al), начинают выделяться и расти частицы (Al). Фаза (Al) на ГЗ (Zn)/(Zn) растет в виде непрерывных пластин, как на рис. 4а, или цепочками частиц, как на рис. 4б. С увеличением продолжительности отжига все выделения фазы (Al) укрупняются. Этот рост более резко выражен при высоких температурах. Ламели (Al) в объеме утолщаются, разбиваются на части и сфероидизируются. Частицы (Al) на ГЗ растут, оставаясь линзовидными. И наоборот, непрерывные слои (Al) на ГЗ остаются плоскими и становятся все толще и толще с увеличением температуры и продолжительности отжига.

Эти факты показывают, что в двухфазной эвтектической области (Al) + (Zn) на объемной фазовой диаграмме Zn–Al происходит фазовый переход "смачивание" (обволакивание) ГЗ (Zn)/(Zn) твердой фазой (Al). ГЗ (Zn)/(Zn), свободные от частиц выделений (Al) в исходном состоянии, разделяются на две группы. На ГЗ первой группы появляются частицы (Al). Эти частицы (Al) разделяются участками "нетронутой" ГЗ (Zn)/(Zn). На ГЗ второй группы появляются непрерывные плоские слои (Al). С увеличением продолжительности отжига морфология выделений на ГЗ изменяется: только количественно (частицы укрупняются, а слои утолщаются), но не качественно. На рис. 4б представлена микроструктура индивидуально ГЗ после отжига в течение 720 ч при 250°С. Непрерывный слой (Al) на ГЗ становится после данного отжига разделенным на частицы подобно частицам в понтрикристаллических образцах.

Составы фаз в образцах были исследованы с помощью рентгеновского микроанализа (рис. 5). Средний состав твердого раствора (Zn) (0,91 вес.% Al), а также средний состав твердого раствора (Al) (21,9 вес.% Al), который после закалки распадается согласно с монотектоидной реакцией, хорошо соответствуют равновесным значениям при температуре отжига [25]. Линия анализа пересекает слой (Al) на ГЗ (Zn)/(Zn). Четко видна тонкая структура монотектоидной смеси, появляющейся в процессе закалки в слоем (Al) на ГЗ и укрупняющихся объемных ламелях (Al).

Для каждой температуры отжига на массиве из примерно ста ГЗ определялись доли ГЗ, покрытых непрерывным слоем твердой фазы (Al) или содержащих цепочки частиц (Al). На рис. 6 показана температурная зависимость доли ГЗ (Zn)/(Zn), покрытых непрерывными слоем твердой фазы (Al). На графике отмечены температуры Tm и Тm монотектоидного и эвтектического переходов в объеме. Ниже Tm в образцах нет ГЗ (Zn)/(Zn), "смоченных" твердой фазой. Вплоть до температуры 283°С (т. е. выше Tm) все ГЗ (Zn)/(Zn) содержат только цепочки частиц (Al). При 300°С в образцах появляются первые ГЗ (Zn)/(Zn), полностью покрытые непрерывными слоями твердой фазы (Al). Это означает, что минимальная температура Тн, перехода "смачивания" (обволакивания) твердой фазой для ГЗ (Zn)/(Zn) лежит между 283 и 300°С. На основе этого наблюдения в двухфазной области (Al) + (Zn) объемной фазовой диаграммы Zn–Al была проведена концентрация для минимальной температуры Tн, фазового перехода "смачивания" (обволакивания) твердой фазой (рис. 2).
Доля ГЗ (Zn)/(Zn), "смоченных" твердой фазой (Al), увеличивается с ростом температуры подобно доле ГЗ, смоченных жидкой фазой [10, 22–24]. Однако доля ГЗ (Zn)/(Zn), "смоченных" твердой фазой (Al), не достигает 100%. Чуть ниже эвтектической температуры T_e только около 35% ГЗ (Zn)/(Zn) полностью покрыты непрерывным слоем твердой фазы (Al). Это означает, что для перехода "смачивания" (обволакивания) твердой фазой $T_{w_{max}} > T_e$. В результате линия $T_{w_{max}}$ для перехода "смачивания" (обволакивания) твердой фазой не появляется в области (Al) + (Zn) объемной фазовой диаграммы Zn–Al (рис. 2).

3. ОБСУЖДЕНИЕ

Если наблюдалось явление в сплавах Zn–5 вес.% Al является действительно равновесным фазовым переходом на ГЗ, то доля ГЗ (Zn)/(Zn), полностью покрытых непрерывным слоем твердой фазы (Al), зависит только от кристаллографического спектра ГЗ и от температуры, а не от предыстории образца. Для того чтобы проверить этот факт, образцы, отожженные при 250, 275 и 283 °C, были дополнительно отожжены при 375 °C.

После отжига при температурах 250, 275 и 283 °C в образцах нет ГЗ (Zn)/(Zn), полностью "смоченных" фазой (Al). Однако после добавочного отжига при 375 °C появляются ГЗ (Zn)/(Zn), "смоченные" фазой (Al) (рис. 7). Доля "смоченных" ГЗ в таком образце лежит между 30 и 40% и хорошо совпадает со значением, полученным после однократного отжига исходных образцов при 375 °C. Таким образом, доля "смоченных" ГЗ не зависит от термической предыстории, она отражает только термодинамическое состояние образцов.

Как мы видели выше, температуры T_w, разные у разных ГЗ из-за того, что различаются их энергии. Хорошо известно, что энергия ГЗ зависит не только от разориентации, но и от ориентации плоскости границ [26, 27]. Другими словами, различно ориентированные части крипролиневой ГЗ имеют различные энергии. Это значит, что между $T_{w_{max}}$ и $T_{w_{min}}$ могут быть найдены ГЗ, участки которых с разной ориентацией могут быть или полностью, или неполностью "смочены" второй твердой фазой. Двойниковые ГЗ имеют минимально
возможную энергию среди высокоугловых ГЗ. Следовательно, двойниковые ГЗ должны иметь наивысшую температуру перехода T_{cr}. Двойниковые ГЗ в Zn можно легко найти в исследуемых образцах с помощью поляризованного света. Даже при очень высоких температурах исследуемые двойниковые ГЗ в Zn никогда не покрываются непрерывными слоями фазы (Al). Частицы (Al) в цепочке ГЗ даже не вытаживаются вдоль двойниковой ГЗ. Это означает, что T_{cr} действительно тем выше, чем ниже энергия ГЗ.

Толщина слоев (Al) на ГЗ L параболически рассея с увеличением продолжительности отжига t. Параметр L^2/t растет экспоненциально с увеличением температуры. Эти факты свидетельствуют о том, что возрастание L контролируется объемной диффузией. Энергия активации составляет $E = 80$ кДж/моль, а предэкспоненциальный множитель $(L^2/t)_0 = 10^{-8}$ м/с. Измеренное значение E для L^2/t близко к значениям E для объемной самоадиффузии и диффузии примесей в Zn и примерно в 2 раза ниже, чем значения E для объемной самоадиффузии и диффузии примесей в Al [28]. Это означает, что рост L контролируется объемной диффузией через твердый раствор (Zn). К сожалению, данных по объемной диффузии Al в Zn в литературе нет.

Поскольку в исследуемых образцах представлены только два компонента, мы можем предположить, что L^2/t дает нам оценку для неизвестного коэффициента объемной диффузии Al в Zn. Важно упомянуть, что значение L^2/t весьма невелико: оно примерно на два порядка величины ниже, чем самые низкие известные значения коэффициентов объемной диффузии в Zn [28].

Существует одно важное различие между жидкокофазным и твердокофазным смещением ГЗ: вторая твердая фаза β тоже содержит границы зерен. Это значит, что в двухфазной области $\alpha + \beta$ объемной фазовой диаграммы могут появляться два вида зернистых концов: один при $T_{\text{садж}}$ для покрытия α/β ГЗ β-фазой (рис. 1a, z, d), а другой - при $T_{\text{садж}}$ для покрытия β/β ГЗ α-фазой (рис. 1a, e, ж). Выше этих температур $T_{\text{садж}}$ и $T_{\text{садж}}$ в поликристаллах в равновесии могут присутствовать только межфазные границы α/β, встречающиеся между собой в четверных стыках (рис. 1a). Микроструктура в этом случае будет подобна шахматной доске или паркету, сконструированному из двух фаз. Такая микроструктура наблюдается в CoPt + CoP3 двухфазной области фазовой диаграммы Co–Pт [29, 30]. В двухфазной области $\alpha + \beta$ объемной фазовой диаграммы могут иметь место два вида переходов "смещения" ГЗ твердой фазой: для границ зерен α/α и β/β. Однако вопрос о возможности "смещения" ГЗ (Al) твердой фазой (Zn) остается открытым из-за того, что ГЗ (Al)/(Al) почти не было в исследуемом сплаве. Для того чтобы ответить на этот вопрос, следует изучить другой сплав с составом приблизительно от 15 до 18 вес.% Zn. В таком сплаве объемная доля фазы (Al) будет выше и соответственно число ГЗ (Al)/(Al) будет достаточным для исследования явления "смещения" ГЗ твердой фазой.

ВЫВОДЫ

В работе показано, что с увеличением температуры при некоторой температуре $T_{\text{кр}}$ происходит переход от неполного "смещения" ГЗ (Zn)/(Zn) второй твердой фазой (Al) к полному "смещению".

Температура перехода $T_{\text{кр}}$ различна для ГЗ с различной энергией $\sigma_{\text{ГБ}}$ (низкая $T_{\text{кр}}$ для высоких $\sigma_{\text{ГБ}}$ и наоборот).

Из энергетической точки зрения $T_{\text{кр}}$ следует, что $T_{\text{кр}}$ может быть различной даже для разных участков одной и той же ГЗ, имеющих различную ориентацию.

Новые концы фазовых переходов "смещения" твердой фазы ГЗ были построены между температурами $T_{\text{крм}}$ и $T_{\text{крм}}$ в двухфазной области (Zn) + (Al) объемной фазовой диаграммы Zn–Al, где две твердые фазы (Zn) и (Al) находятся в равновесии.

$T_{\text{крм}}$, в системе Zn–Al лежит немного выше температуры монокристаллического перехода $T_{\text{кр}}$.

$T_{\text{крм}}$, в системе Zn–Al лежит выше температуры эпитаксиального перехода $T_{\text{кр}}$.

Доля ГЗ (Zn)/(Zn), "смоченной" твердой фазой (Al), увеличивается от 0 до ~35% с увеличением температуры от $T_{\text{крм}}$ до $T_{\text{кр}}$.

Авторы благодарят РФФИ (гранты № 04-03-32800 и 04-03-34982), INTAS (гранты № 03-51-3779 и 04-83-3659), Миннауки и образования ФРГ (проект RUS 04/014).

СПИСОК ЛИТЕРАТУРЫ

2. Носовик И.И. Теория термической обработки металлов. М.: Металлургия, 1986. 480 с.