МИГРАЦИЯ ГРАНИЦ НАКЛЮНА [001] В ОЛОВЕ В ОКРЕСТНОСТИ ЗЕРНОГРАНИЧНОГО ФАЗОВОГО ПЕРЕХОДА Σ17—Σ1

Е. Л. Максимова, Б. Б. Страхман, Л. С. Швиддерман

Изучены температурные зависимости скорости миграции границ наклона с углами разориентации, близкими к 28,07° (Σ17). На температурных зависимостях скорости миграции наблюдаются скачки скорости при температурах T_c, которые совпадают с температурами фазовых переходов специальных границ Σ17 в границы общего типа, полученными при изучении температурных зависимостей поверхностного натяжения этих границ [1]. По температурам T_c и данным работы [1] построена фазовая диаграмма существования границ Σ17. Форма линии фазового равновесия обсуждается на основе термодинамических зернограничных фазовых переходов и дислокационных представлений о структуре границ зерен.

В работе [2] на основе имеющихся в литературе экспериментальных данных о структуре и свойствах границ зерен показано, что специальные границы зерен существуют в ограниченном интервале температур и углов разориентации. Ширина интервала углов разориентации, в котором границы обладают специальной структурой и свойствами, экспоненциально падает с ростом Σ — обратной плотности совпадающих углов. Максимальная температура существования специальных границ также уменьшается с ростом Σ. Поэтому при данной температуре специальной структурой и свойствами обладают лишь границы с Σ, меньшей некоторого Σ_{max}. В [2] высказано предположение, что при определенных значениях углов разориентации и температур можно наблюдать фазовый переход специальная граница — граница общего типа.

В работе [1] на трикристаллах с тройными стыками с заданной разориентацией границ экспериментально изучены температурные зависимости поверхностного натяжения границ наклона [001] в олове в интервале углов разориентации ϕ от 25,5 до 30°. На температурных зависимостях поверхностного натяжения σ границ с углами разориентации ϕ, наиболее близкими к $\phi(\Sigma17) = 28,07°$, были обнаружены изломы. Положение T_c этих изломов температурных зависимостей определяется лишь углом разориентации границ и не зависит от других термодинамических, кинетических и геометрических параметров изучаемых тройных стыков. В [1] существование изломов объясняется зернограничным фазовым превращением специальных границ Σ17 в границы общего типа. По температуре T_c была построена линия равновесия зернограничных фаз, разделяющая области существования границ Σ17 и границ общего типа. Эта линия имеет колокообразную форму, согласующуюся с представлениями о дислокационной структуре специальных границ и определяемую законом $\Delta T \sim \sin \Delta \phi (B - \ln \Delta \phi)$. Поверхностное натяжение границ σ — их основная термодинамическая функция. Поэтому данные [1] однозначно характеризуют линию равновесия фаз Σ17 и Σ1 для границ наклона [001]. Поэтому интересно уг-
нать, как изменяются вблизи температуры зернограничного фазового перехода кинетические свойства границ, в частности их подвижность.

В работах [3—6] показано, что параметры миграции границ зерен немонотонно зависят от угла разориентации границ: в достаточно чистых металлах с содержанием примесей от 10^{-1} до 10^{-4} ат. % вблизи специальных углов разориентации обнаружены максимумы подвижности.

![Diagram](image)

Рис. 2. Температурные зависимости скорости миграции границ наклона [001] в олове, приведенные к одинаковой движущей силе. Углы разориентации:

$\sigma = 20.0; \phi = 26.0; \theta = 37.0; \phi = 27.7; \theta = 28.2; \phi = 29.0; \theta = 29.5$.

На рис. 2е приведены данные для образцов с различной движущей силой σ: $\alpha(\Delta): \beta(\bullet): \gamma(\circ) = 2.9 : 1.5 : 1$. Видно, что f_{σ} не зависит от движущей силы миграции.

Установлены параметры активационных центров зерен [001] в олове вблизи линии равновесия фаз $\Sigma 17$ и $\Sigma 1$ [1].

Цель данной работы — измерение параметров миграции границ зерен [001] в олове вблизи линии равновесия фаз $\Sigma 17$ и $\Sigma 1$ [1].

Бикристаллы для измерения параметров миграции выращивали методом направленной кристаллизации в атмосфере аргона ОЧ4, в лодочках из особо чистого графи-
Результаты эксперимента и их обсуждение

Мы изучали миграцию семи границ наклона [001] в олове с углами разориентации от 26 до 29,5° в интервале температур от 0,93 до 0,997Tпл.

На рис. 3 приведены полученные температурные зависимости подвижности границ. Первые два значения (рис. 2а, б) имеют вид прямых в аррениусовских координатах по всем изученным интервалам температур. На следующих четырех температурных зависимостях (рис. 2в, г, д, е) наблюдается скачкообразное понижение подвижности при повышении температуры в точках, обозначенных Tc.

Ниже и выше Tc подвижность изменяется по закону Арренуса. В точке Tc подвижность падает при увеличении температуры примерно на порядок. Температура Tc вначале возрастает с увеличением угла разориентации границ (рис. 2в, г), а затем, достигнув максимума (рис. 2д), снова падает (рис. 2е). На последней из приведенных температурных зависимостей (рис. 2ж) снова нет никаких особенностей.

На рис. 3 приведена линия равновесия фаз Σ17 и Σ1, полученная в [1]. На этом же рисунке отмечены и температуры Tc, при которых скачкообразно изменяется подвижность границ. Видно, что температуры Tc, определенные по скачкам подвижности, совпадают с температурами перехода Σ17—Σ1, определенными по изломам на температурных зависимостях поверхностного натяжения в работе [1]. Здесь же приведены литературные данные по исследованию структуры границ кручения в золоте и окиси магния [12, 13]. Полученная граница обла-
сти $\Sigma 17$ попадает в интервал углов, где исчезают изображения вторичных зернограницочных дислокаций.

Если скачки подвижности действительно связаны с равновесным фазовым переходом на границах, а не с какими-либо кинетическими процессами (напр., с влиянием примеси), то температура T_c не должна зависеть от движущей силы процесса миграции. Движущая сила представляет собой по размерности и физическому смыслу давление, оказывающее на границу. В используемой схеме миграции движущая сила определяется капиллярным давлением искривленной границы зерен. Это давление относительно невелико: $\Delta F = \bar{P} = 10^3$ Па. Ясно, что столь малое давление не может существенно изменить температуру перехода в конденсированной фазе. Количественную оценку изменения T_c можно провести с помощью уравнения Клеппера — Клаузиса. Будем использовать характерные значения параметров для фазовых переходов в конденсированных фазах. Тогда изменение температуры фазового перехода ΔT_c под воздействием давления P равно: $\Delta T_c \approx T_c \Delta P \Delta V / \lambda$. Здесь λ — теплева перехода, а ΔV — изменение объема при переходе. Откуда $\Delta T_c \approx 10^{-3} K$.

Скачок скорости миграции, внешне аналогичный обсуждаемому в данной работе, наблюдался ранее на специальных и близких к специальным границам зерен в алюминии [7]. В работе [7] скачки скорости объяснялись отрывом движущейся границы от облака адсорбированной примеси. При отрыве границы от примеси даже небольшие изменения должны сильно сдвигать температуру отрыва [8, 9, 17]. Действительно, в простейшем варианте теории [9, 17] отрыв происходит в момент, когда сила связи примеси с границей равна движущей силе миграции

$$\Delta F = 2c u_0 \exp \left[\frac{u_0}{k T_{\text{отр}}} \right],$$

где c — концентрация примеси в объеме зерна; u_0 — энергия связи примеси с границей; $T_{\text{отр}}$ — температура отрыва. Отсюда

$$\delta T_{\text{отр}} \approx \frac{u_0}{k} \left(\ln \frac{\Delta F}{2c u_0} \right)^{-2} \frac{\delta (\Delta F)}{\Delta F}.$$

Из (1) и (2) получаем

$$\frac{\delta T_{\text{отр}}}{T_{\text{отр}}} \approx \frac{k T_{\text{отр}}}{u_0} \frac{\delta (\Delta F)}{\Delta F}.$$

Для характерных значений параметров ($T_{\text{отр}} \approx 10^3 K$, $\Delta F = 10^3 \text{Дж/моль}$, $u_0 \approx 50 \text{кДж/моль}$, $\delta (\Delta F) \approx 10^3 \text{Дж/моль}$, $6 T_{\text{отр}} / T_{\text{отр}} \approx 0.1$), что соответствует смещению температуры отрыва на десятки градусов.

На рис. 2д приведены данные экспериментов по зависимости T_c от движущей силы для границы с $q = 29^\circ$. В изученном интервале движущих сил ($a_1 : a_2 : a_3 = 2.9 : 1.5 : 1$) температура скачка не зависит (в пределах ошибки эксперимента) от движущей силы. Это означает, что наблюдаемые скачки скорости нельзя объяснить отрывом границы от примеси. В экспериментах по исследованию эффекта отрыва изменение движущей силы ($\Delta F \approx 10^3 \text{Па}$) в 1,5 раза сдвигало температуру отрыва на десятки градусов [10].

Если скачок подвижности связан с фазовым переходом, то его величина не должна зависеть от пути пересечения линии равновесия фаз: при $T = \text{const}$ или при $q = \text{const}$. На рис. 4 приведены ориентационные зависимости подвижности для четырех температур. Видно, что при пересечении линии равновесия фаз по траектории $T = \text{const}$ подвижность изменяется также примерно на порядок. Это обстоятельство дополни-
тельно подтверждает то, что мы наблюдаем равновесный переход одной зернограничной фазы в другую.

Из рис. 4 видно, что при переходе границ Σ17 в границы общего типа наблюдаются и специальные свойства этих границ: в области существования границ Σ17 приведенные скорости границ выше, чем за ее пределами.

Изложенными результатами изучения температурных зависимостей скорости миграции границ на границе в олове свидетельствуют по нашему мнению, о фазовом превращении специальных границ зерен Σ17 в границы зерен общего типа. Скачкообразное изменение приведенной скорости миграции в точке перехода и отсутствие критических явлений вблизи этой точки позволяют считать, что это фазовый переход I рода. Рассмотрим теперь, какие перестройки структуры границ зерен происходят, по нашему мнению, при этом переходе.

В настоящее время экспериментально доказано, что границы зерен обладают упорядоченной структурой. При малых углах разориентации ф границы зерен состоят из стенки или сетки решеточных дислокаций. Расстояние между этими дислокациями d1 определяется периодом так называемой О-решетки [11]: d1 = d0/[2 sin(φ/2)], d0 — вектор Бюргера решеточных дислокаций. Эти дислокации хорошо видны на электронно-микроскопических снимках, а так как дислокации образуют упорядоченную двумерную структуру, при дифракции из них рентгеновских лучей или электронов образуется характерный набор рефлексов [12—15]. При увеличении угла разориентации ф изображения дислокаций на электронно-микроскопических снимках сближаются, в то время как дифракционные картины качественно не изменяются и по-прежнему хорошо описываются периодом О-решетки (см. рис. 5а, где приведены результаты из [11], а также работу по изучению границ кручения в окиси магния [12]). Такие зернограничные дислокации принято называть первичными, а границы зерен, содержащие только первичные ЗГД, мы будем называть границами общего типа. Поскольку дифракционные картины от границ общего типа принципиально не изменяются по всем интервалам углов разориентации, их можно отнести к одной и той же зернограничной фазе Σ1. При ф = 0 совпадают все узлы двух решеток, поэтому Σ = 1.

При некоторых значениях угла ф = фп узлы О-решетки совпадают с узлами решеток двух границящих кристаллов. В этом случае возникает решетка с Σ > 1. Границы с углами разориентации ф обладают более низкой энергией по сравнению с границами общего типа [16], а их свойства резко отличаются от свойств границ общего типа [17]. Такие границы называют специальными. Хотя геометрическое совпадение узлов двух решеток нарушается при сколь угодно малом отклонении от фп, структура специальных границ настолько энергетически выгодна, что их специальные свойства сохраняются в интервале углов 2Δф. В этом интервале структура специальных границ состоит из участков границы со структурой ф = фп, которые разделены вторичными зернограничными дислокациями. Эти дислокации аккомодируют отклонение Δф, их векторы Бюргера bΣ определяются как называемой полной ре-
шестью наложений и равны $b\gamma = b_\psi / \sum$. Расстояние между этими дислокациями определяется с помощью O_2-решетки по формуле, в которой вместо b_ψ фигурирует b_Σ, а вместо $\varphi - \Delta \varphi$ (отклонение от φ_0, см. рис. 5а).

Таким образом, структура специальных границ принципиально отличается от структуры границ общего типа. Это позволяет говорить о существовании для каждого Σ своей зернограничной фазы: например, Σ_5, Σ_13, Σ_17 и т. д. Следовательно, при некотором значении угла разориентации ψ, близком к специальному $\psi = \psi_0 + \Delta \psi$, могут реализоваться две различные структуры границы (см. рис. 5б): из одних первичных дислокаций с периодом $d_1 = d_1(\psi_0 + \Delta \psi)$ или из участков с периодичностью первичных дислокаций $d_1 = d_1(\psi_0) = b_\psi / [2 \sin (\psi_0/2)]$, разделенных вторичными ЭГД с периодом $d_2 = d_2(\Delta \psi) = b_\Sigma / [2 \sin (\Delta \psi/2)]$.

При увеличении $\Delta \psi$ энергия стенки вторичных ЭГД возрастает и при определенном $\Delta \psi$ меняется тип структуры границы. Такое изменение должно, по нашему мнению, иметь характер фазового перехода I рода. Переход специальная граница — граница общего типа должен происходить и при изменении температуры, так как свободная энергия менее упорядоченных границ общего типа понижается с температурой быстрее, чем свободная энергия специальных границ (см. схему на рис. 5б). Схема на рис. 5б показывает, что при увеличении $\Delta \psi$, когда
возрастает энергия стенки вторичных ЗГД, температура фазового перехода T_c понижается. Определим закон ее изменения.

Рассмотрим равновесие двух зернограничных фаз в однокомпонентной системе. В точке перехода химические потенциалы атомов μ_1^* и μ_2^* в двух фазах равны $\mu_1^* = \mu_2^*$. Кривая зернограничного фазового равновесия определяется поверхностным аналогом уравнения Клаузисса — Клапейрона. Если в качестве переменных выбрать σ и T, то

$$
\frac{d\alpha}{dT}_e = -\frac{\Lambda (\partial \mu^* / \partial T)_\sigma}{\Lambda (\partial \mu^* / \partial \sigma)_T},
$$

$$
\frac{d\sigma}{dT}_e = \frac{\Delta S^s}{\Delta \alpha}.
$$

Итак, фазовый переход первого рода в границе сопровождается скачкообразным изменением энтропии ΔS^s и удельной площади ΔA, за-

Рис. 6. Соответствие формы линии равновесия $\Sigma 17 - \Sigma 1$ (точки, по данным рис. 3) дислокационной модели для температуры перехода T_c (сплошная линия), ϕ — угол разориентации, $\Delta T = 220^\circ C$. T_c.

нимаемой в границе молем вещества. Если рассматривать границы с разными углами разориентации ϕ, то

$$
\frac{d\alpha}{dT} = \frac{d\alpha}{d\phi} \cdot \frac{d\phi}{dT} = \left(\frac{d\alpha}{d\phi} \right)_e \cdot \left(\frac{d\phi}{dT} \right)_e.
$$

Тогда равновесная температура фазового перехода изменяется с углом разориентации, как

$$
\frac{d\alpha}{d\phi} = -\frac{\Delta A}{\Delta S^s} \left(\frac{d\alpha}{d\phi} \right)_e.
$$

При изменении угла разориентации специальной границы на $\Delta \phi$ на границе появляется стенка вторичных ЗГД с периодом d_2. Поверхностное нахождение границ наплакона возрастает на $\Delta \sigma$

$$
\Delta \sigma = \left(\frac{Gb_\Sigma}{4\pi (1 - \nu)} \right) \sin \Delta \phi \left(1 + \frac{b_\Sigma}{2\pi r_0} \ln \Delta \phi \right),
$$

где r_0 — радиус обрезания, G и ν — упругие модули. Тогда

$$
\Delta T \approx -\frac{A}{\Delta S^s} \left[\frac{Gb_\Sigma \sin \Delta \phi}{4\pi (1 - \nu)} \left(1 + \ln \frac{b_\Sigma}{2\pi r_0} \right) - \ln \Delta \phi \right].
$$

На рис. 6 получена нами зависимость T_c от угла разориентации ϕ (см. рис. 3) построена в координатах $(\Delta T / \sin \Delta \phi) - (\ln \Delta \phi)$. По отсекаемому на оси абсцисс отрезку можно определить величину r_0: $r_0 = 5b_\Sigma$. Получается, что ширина ядра вторичных зернограничных дислокаций в несколько раз превышает их вектор Бюргерса. Это согласуется с представлениями о большой ширине ядер зернограничных дислокаций, выдвинутыми в [18]. Угол $\Delta \phi^*$, при котором происходит си-
Ячейка ядра зернограницочных дислокаций можно оценить из условия \(d_2 \approx 2d_0 \). Тогда \(\Delta g^* \approx 6 \).

По наклону прямой на рис. 6 можно определить величину \(A/\Delta S^* \). При \(G=18 \mathrm{ ГПа} [19] \), \(v=0.330 [19] \) и \(b_s=a/\sqrt{17}=78 \times 10^{-2} \) нм получим \(\Delta S^*/\Delta A=3 \times 10^{-4} \) Дж/моль·К. Значение \(\Delta S^*/\Delta A \) можно оценить из обилий термодинамических соображений: \(\Delta S=L/T_0 \). Для плавления известны \(L_m/T_0=14 \) Дж/моль·К [19], \(\Delta A=\Delta V_m/V_{\text{моль}}/a=7 \times 10^{-2} \) моль·К [19]. Получаем \(\Delta S^*/\Delta A=4 \times 10^{-4} \) Дж/моль·К. Таким образом, значение \(\Delta S^*/\Delta A \), полученное в наши эксперименты для перехода \(\Pi \rightarrow \Sigma \), согласуется с оценками для типичных «объемных» фазового перехода.

Авторы благодарят В. Е. Фрадкову и С. И. Прокофьева за полезное обсуждение работы.

Институт физики твердого тела
АН СССР

Поступила в редакцию
14 февраля 1986 г.

ЛИТЕРАТУРА

3. Алекскин А. Н., Бокотей В. С., Петелин А. А., Швинглерман Л. С. Диффузионные циклы по однотипным границам крепления в алюминии. — Металлургия, 1980, 2, № 4, с. 83—89.

10. Аристов В. Ю., Копеиски Ч. В., Молодов Д. А., Швинглерман Л. С. Кинетические и адсорбционные свойства 36.5° <111> границы нуклонов в сплавах Al—Fe. — ФТТ, 1980, 22, № 11, с. 3247—3253.

17. Аристов В. Ю., Фрадков В. Е., Швинглерман Л. С. Эффект отрыва миграющей зернограницочной подушечки от облака адсорбированной пленки. — ФТТ, 1980, 22, № 6, с. 1817—1824.
