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Abstract--A theory of grain boundary motion in the presence of mobile particles is put forward. It is 
shown that the boundary-particle-interaction leads to a hysteresis in the velocity-driving relationship. The 
extent of the hysteresis depends on particle mobility, which is very sensitive to particle size. The effect 
of particles is discussed for planar and curved boundaries as well as volume particle distributions. The 
theory accounts for a smaller limiting grain size during grain growth than predicted by Zener drag. 
The concept can be generalized to include all kinds of mobile obstacles for boundary migration. In such 
cases not the distribution of obstacle spacing rather the distribution of obstacle mobilities will control 
microstructure evolution. 

Zusammenfassung--Eine Theorie dee Korngrenzenbewegung in Gegenwart beweglicher Teilchen wird 
vorgestellt. Es wird gezeigt, dab die Wechselwirkung zwischen Korngrenze und Partikel zu einer Hysterese 
dee Beziehung zwischen Korngrenzengeschwindigkeit und treibender Kraft fiihrt. Das AusmaB dee 
Hysterese h/ingt fiber die Teilchenbeweglichkeit sehr empfindlich von dee Teilchengr6Be ab. Dee EintluB 
von Teilchen wird behandelt ffir ebene und gekriimmte Korngrenzen sowie fiir Volumenverteilungen yon 
Teilchen. Die Theorie sagt eine kleinere Endkorngr6Be bei Kornwachstum voraus als unter alleiniger 
Beriicksichtigung des Zener drags. Das theoretische Konzept kann auf beliebige bewegliche Hindernisse 
fiir die Korngrenzenbewegung erweitert werden. In diesem Fall wird die Mikrostrukturentwicklung nicht 
von dee Abstandsverteilung dee Teilchen, sondern von dee Verteilung dee Teilchenbeweglichkeiten 
bestimmt. 

1. INTRODUCTION 2. OUTLINE OF THEORY 

The drag by particles of a second phase on a 
moving grain boundary is traditionally considered 
in the approximation where the particles act as 
stationary pinning centers for the boundaries 
(Zener drag) [1,2]. Consequently, the effect of 
particles on grain boundary motion is the more 
pronounced, the better the dispersion of particles, 
i.e. the smaller the size of the particles. This is 
the basis for the control of grain size during 
grain growth and to a lesser extent also for re- 
crystallization. 

On the other hand it has long been known that 
inclusions in solids are not immobile and that the 
particle mobility drastically increases with decreasing 
particle size [3-11]. Therefore, the fundamental 
assumption that particles remain immobile during 
recrystallization and grain growth is questionable and 
liable to cause serious misinterpretations in the 
technologically interesting limit of fine particle 
dispersions. 

This paper is aimed at an extension of  our current 
theoretical description of grain boundary motion in 
two-phase materials to include also the influence of 
particle mobility. 

2.1. Motion of  a planar grain boundary 

Let us consider the motion of a planar grain 
boundary, which is in contact with second phase 
particles. The velocity of such a boundary is given 
by 

v = AFe~" mb (1) 

where mb is the mobility of a grain boundary and AF~g 
is the effective driving force. AFe~ can be written 

AFo~ = a F  - ~ n,fi. (2) 
i 

Here AF is the total driving force acting on the grain 
boundary, n~ is the number of particles with radius ri 
per unit area of the boundary, and f,. is the attraction 
force between the boundary and a particle of size ri. 
The value ni is at present assumed to remain constant 
during motion, but this assumption will be discussed 
in more detail in Section 2.6. 

On the other hand the velocity of a particle (and 
therefore also of the boundary in case that both move 
together) reads according to the Einstein relation 

v = mp(ri)fi. (3) 
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mp(rt) is the mobility of  a particle with radius r~. 
Combination of equations (1), (2) and (3) yields 

AF" m b 
v =  (4) 

m b  
1 + ~ n ~  - -  

i m p ( r i )  

or, for a continuous size distribution of particles per 
unit area ri(r) 

A F '  m b 
v = f ~  ~(r)mb.  (5) 

- -  o r  1 + I .  r a p ( r )  

with the total number of  particles per unit area 

n = fi(r) dr. (6) 

Equations (4) or (5) describe in general terms the joint 
motion of a grain boundary with attached particles. 
It is evident that the motion of the boundary- 
particles-complex depends on the mobility of  the 
boundary, mobility of  the particles, particles distri- 
bution function and, which is particularly important, 
size of  the particles [4--7]. 

For an estimation of the effect of  particle mobility 
on grain boundary motion we consider two limiting 
c a s e s .  

(I) High particle mobility 

~'~ ~(r)m b 
- -  o r  __J0 rap(r) ,~ 1. (7) 

Then 

v ~ mb AF. (8) 

In this case the grain boundary velocity is determined 
by the mobility of the boundary. 

(II) Low particle mobility 

/0~ ~ d r  ,> 1. (9) p( ) 

Then 

AF 
v _-__ (10) 

fo ~ fi(r) dr 
rap(r) 

or in the simple ease of a single size particle distri- 
bution [6]: fi(r) = no" 6(r  - ro) 

AFmp(ro) 
v = - -  ( l l )  

no 

In this limit the velocity of  the grain boundary is 
determined by the mobility and the density of  the 
attached particles. 

2.2. Particle mobility 

As mentioned above, the particle mobility depends 
strongly on particle size. It is obvious that for any 
kind of atomic transport mechanism that may control 
particle motion, the particle mobility mp (r) decreases 
with increasing size of  the particle. As an example, we 

will consider the mobility of a particle with spherical 
shape and radius r in case that the atomic transfer is 
limited by interface diffusion. Then, according to the 
result given in the Appendix 

VsfFDs 
mp(r) = nr4k T (12) 

where Vs is the surface density of atoms, f~ the atomic 
volume and Ds the surface diffusion constant. The 
mobilities of particles for different atomic transfer 
mechanisms as derived by several authors are given 
in Table 1. As can be seen from the table, the particle 
mobility depends on particle size very strongly for 
all transfer mechanisms. Therefore, the boundary 
velocity is most severely influenced by large part- 
icles according to equation (10), if their density is 
appreciable. 

If  the driving force (per particle) exceeds the critical 
attraction force f*,  the grain boundary cannot move 
any longer together with the particles and detaches 
from them at the velocity 

v* =f*mp(r)  (13) 

which depends on particle size, of course. The vel- 
ocity v* is the highest velocity for the joint movement 
of  particles and grain boundary. 

2.3. Particle-boundary interaction 

In the following we will discuss the nature of the 
attraction force between particles and grain bound- 
aries. The simplest and commonly exclusively con- 
sidered attraction force is the well known 
"Zener-force", which is due to the reduction of grain 
boundary area by the intersection of particle and 
boundary. For a spherical particle with radius r and 
a planar grain boundary, the reduction of grain 
boundary energy per particle, Aa [1] is 

Aa = a(Al -- nr 2) (14) 

a denotes the grain boundary surface tension and A t 
the unit area. Correspondingly, the maximum attrac- 
tion force is 

f *  = 2rcra. (15) 

A more precise calculation for a flexible boundary 
gives the Zener force [2, 12] 

fz = ~nra. (16) 

The Zener force, however, is not the only attraction 
force in a particle-boundary system. For instance, if 
a particle has a low free energy (surface tension) 
coherent interface with the matrix, this coherence will 
be lost, when the particle is swept by the boundary, 
since the grain boundary migration changes the 
orientation of the matrix in contact with the particle 
and, consequently, the interface energy changes 
by [131 

• '%0" = 4 n r 2 ( 0 " 2  - -  a I ) (17) 
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Fig. 1. Example of particle circumvention by a moving grain boundary in copper. (a) Flexing at particle; 
(b) looping of particle. 

and the maximum drag is 

= 8nr(a2 - a l )  (18) 

where a~, tr 2 are the interface energies of  the particles 
in the growing and vanishing grain, respectively. 

If  the increase of  interface energy according to 
equation (17) exceeds a critical value, then the mov- 
ing grain boundary prefers to circumvent the particle 
and to leave behind a spherical volume of  the original 
grain with the particle inside [8]. In this case (Fig. 1) 

Air = 4nr2a (19) 

and the maximum attraction force 

f~3 = 8nra.  (20) 

The maximum attraction force will be determined by 
the respective particle boundary interaction, accord- 
ing to equations (16), (18) or (20) and will control the 
detachment of  the grain boundary from the particles. 

2.4. Ve loc i t y -dr i v ing  f o r c e  relat ionship 

The collective movement of particles and grain 
boundary at subcritical driving forces, and the de- 
tachment of  particles at supercritical driving forces 
results in a bifurcation of the grain boundary mi- 
gration rate with increasing driving force. For a single 
size particle distribution this is schematically shown 
in Fig. 2. At low driving forces AF, the boundary 
moves together with the particles and the kinetics of 
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. . . . . .  J a  V4 / / / / ~  

AF crlf AF 

Fig. 2. Schematic dependency of grain boundary velocity 
on driving force for a single size particle distribution on the 
boundary. A_b ent is the Zener force. The behavior is discon- 

tinuous at AF* and v*. 

this movement are determined by the particle mobil- 
ity and density [equation (11)]. When the driving 
force reaches the critical value AF erit = f * - n ,  the 
grain boundary will break away from the particles, 
and thus, instantly increase its velocity to the 
migration rate of an unloaded boundary (point b in 
Fig. 2). The velocity difference between a loaded and 
a free boundary corresponds to the difference be- 
tween the particle mobility [mp(r)/n] and grain 
boundary mobility (rob). On the other hand, if the 
driving force AF acting on an unloaded boundary 
decreases, the grain boundary velocity will decrease in 
proportion to the driving force until a critical value 
v* (point c in Fig. 2) is reached. At this point the 
boundary velocity changes discontinuously to the 
velocity corresponding to the loaded boundary, since 
then the particles become capable of moving with the 
boundary and will exert a drag force. Therefore, a 
hysteresis exists between the points of particle detach- 
ment with increasing driving force and particle 
attachment at decreasing boundary velocity. The 
gap between the critical points--the size of the 
hysteresis--is for a single size particle distribution 

A F , - A F t  = f * n ( l  mp(r)~nmb / (21) 

i.e. it rises with increasing critical attraction force f*, 
density of particles n and mobility ratio n .mb/mp(r ). 

In real systems, the relation will be more compli- 
cated, since the particles will not be of uniform size, 
but will have a size distribution, and the normalized 
particle mobility mp(r)/n and thus, the hysteresis, will 
depend on the shape of distribution function accord- 
ing to equation (5) (see Section 2.6). 

2.5. Effect of boundary curvature 

So far we have tacitly assumed that the grain 
boundary remains planar during motion. In real 
processes, however, like recrystallization and grain 
growth, boundaries will be curved and, therefore, the 
curvature has to be taken into account. 

7•-.. y Q j . , y  

. , ' J !  At 

Fig. 3. Sketch of bicrystal geometry for a moving grain 
boundary half-loop. 

Here we will treat the effect of curvature on the 
acting driving force and, correspondingly, on the 
particle detachment/attachment process, which is rel- 
evant in particular for grain boundary motion during 
grain growth. We shall confine our consideration to 
the steady state motion of a grain boundary half-loop 
[14-16]. This choice has the advantage that the 
shape and character of a grain boundary half-loop 
during steady state motion can be described analyti- 
cally. On the other hand, the consideration can, in 
principle, be extended to more complex geometries 
without requiring an extension of the underlying 
physical concepts. 

For sake of simplicity let us consider the steady 
state motion of a grain boundary (Fig. 3) in a sys- 
tem with a single size particle distribution. The 
shape of a half-loop y = ~(x) (Fig. 4) during 
its steady state motion can be described in a co- 
ordinate system attached to the moving boundary 
by [16] 

V 
~'" = - ~'[1 + (~,,)2] (22) 

tTm b 

where V is the displacement rate of the half-loop 
moving as a whole and tr the grain boundary surface 
tension, which we assume not to change with grain 

a12 . , , . " ~ ' ~ _  * Ix )  

• al 2 

Fig. 4. Relation between overall half-loop velocity V and 
velocity v of arbitrary grain boundary segment. 
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boundary orientation in the following case. The 
general solution of equation (22) reads [16] 

_ m b f f  q~(x) = % + T arc cos(e (-(x-x°) V)/(m~,)) (23) 

and with the initial configuration (at t = 0) of a 
half-loop with radius a/2 and vertex at x = 0 

a 
= - arc cos e -(~x)/a (24a) 

~o'm b 2a n m  b 
V = - (24b) 

a a 2 

where 2tr/a corresponds to the average driving force 
and nmb/2 to the average half-loop mobility. 

The index "L" denotes loaded boundary. The free 
moving part in vicinity of the vertex assumes the 
shape ~V (F for free boundary) 

mbfff cos(e(-(x - ~oF). ~O/(mb,,)). (28) q~v = ~OF + ~ arc 

Correspondingly, there is a point x* where 

eL(X*) = 4~v(X*); ~ . (X*)--  ¢~(X*) (29) 

since the boundary cannot have discontinuities or 
kinks. 

With the initial conditions: CF(0)= 0, 4~t(0C)= 
a/2 and ~ ( 0 )  = oo, we obtain the general solution 

I m b_~fa arc cos(exp _ Vx 
[ v \ mbfa / 

~(x) 

] a mp(r) a . ( 
~ 2  n ~ arc smkexp 

O<.x <~x* 

ix x x. 
mp(r)a ] 

(30) 

The actual form of the solution depends on how 
the mobility mb and boundary surface tension a 
change locally. Since the mobility mb is determined 
either by the particle mobility mp(r)/n or by the 
mobility of the free boundary mbf 

mp(r) • [- mp(r)q 
m b = - - - - ~ + O ( v - - v  (25) 

where O is the Heaviside step function and v* the 
critical velocity, where the transition from a free 
moving boundary to a boundary loaded with par- 
ticles occurs. While the half-loop is displaced with 
constant velocity V parallel to itself, the individual 
sections of the grain boundary move parallel to the 
grain boundary normal of this section with velocity 
(Fig. 4) 

v = V cos ~ = V~'[1 + (~,)2]-a/2. (26) 

Therefore, the grain boundary velocity changes lo- 
cally: it is at its maximum at the vertex of the 
half-loop, but drops to zero at the loop section 
parallel to the X-axis. 

If the vertex velocity V < v*, then the bounary 
does not become detached from the particles at 
any point, hence its mobility mb = mp(r)/n = const., 
and its shape and velocity are described by 
equations (24). 

If  V > v*, then the vertex moves freely with mobil- 
ity mbf, but there will always be a section of  the 
half-loop, where V < v*, i.e. where the particles and 
the boundary move together with mobility mp(r)/n. 
The shape q~L of this latter part is determined by an 
expression similar to equation (23) 

rap(r) ~r cos(e(-( ..... ). v,)/(o.mp(O)). 4~L=~0L+ n ~ a r c  

(27) 

where 

Also 

m b f o "  • V 
x* = T m ~-~ (31) 

vF- v*=Vsin ~ _ - ~ ] .  (32) 

ffffmbf 
V F = - -  (33a) 

a 

lie = ~zcr mp(r ) (33b) 
a n 

The change in shape of the half-loop on break-away 
from the particles is given schematically in Fig. 5. It 
is emphasized that the detachment from the particles 
must flatten the moving grain boundary. This result 
is in a good agreement with experimental data [11]. 
The dependence v*(V) according to equation (32) is 
shown in Fig. 6 for various ratios ~ = VL/V F. For 

= 0.5 the behavior of the half-loop is shown in bold 
lines. If v*/V is large, then the boundary moves 
together with the particles and its velocity is 

I II III 

Fig. 5. Shape change of a grain boundary half-loop during 
detachment from particles. (a) before detachment, (b, c) 

progressive stages of detachment. 
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v f I / 
/ 08 a 

o.6 

04 ~ ~  
Q2 

02 Q/~ 0.6 08 VI~ 

Fig. 6. Steady state half-loop velocity for different ratios 
~ = Vc/V r according to equation (32) (see text for details). 

V L = 7Zamp(r)/(na) (line a-b  in Fig. 6). If the ratio 
v*/VF decreases to reach v*/VF=ct, some of the 
particles detach from the half-loop vertex and the 
boundary velocity discontinuously changes to point 
"c" (Fig. 6). With further reduction o f v * / V m o r e  and 
more particles break away from the half-loop and its 
velocity approaches VF. Conversely, if v* /V  F in- 
creases, the half-loop velocity follows the same curve 
to the point "d"  and then discontinuously changes to 
V L = mrmp(r)/(na), because of particle attachment. 
As a result, also for a curved boundary a hysteresis 
effect is obtained, similar to the behavior of a planar 
grain boundary. 

2.6. Grain boundary motion in a particle containing 
volume 

So far we have considered the migration of a 
boundary loaded with particles and the velocity de- 
pendent detachment of particles from the boundary. 
In reality, however, there will be a volume distri- 
bution of particles, and we define the particle volume 
distribution function riv(r ) dr as the number of par- 
ticles per unit volume with size between r and r + dr. 

For a stationary boundary (v = O) an equilibrium 
distribution of particles on the boundary rib (r) will be 
established, which is different from the volume distri- 
bution owing to the interaction energy AF z = k 1 ~r2tr, 
between particle and boundary (the Zener energy, 
k~--geometry factor) 

k I . 7~r2t7 
rib(r)dr =riv(r)2r e x p ( + ~ - k ~ - - - - ) d r .  (34) 

If a boundary would move from a particle free 
volume to a particle containing volume, the equi- 
librium distribution will be readily established, since 
the influx of particles per unit area An + =ri~vAt 
during the time interval At = Ax/v, where Ax is the 
boundary displacement, is balanced by the loss rate 

tThis assumption does not limit the general validity of the 
conclusions. In case of r t> d(r)/v, the boundary distri- 
bution would attain a higher density, but nevertheless 
constant particle distribution, since the thermal particle 
loss rate increases with particle density. 

An -  = nb(r)/z-(r  ) where z - ( r )  is the average "life" 
time of a particle of size r in the boundary. If 
: - ( r )  <d(r)/v,  where d(r) is the average spacing 
of particles with size r, the thermal equilibrium 
distribution rib(r ) is maintained during boundary 
migration. In the following we shall assume that this 
condition hoidst. 

For  a moving boundary, however, the equilibrium 
particle distribution can be only maintained for 
particles, which are able to migrate with the bound- 
ary, i.e. for a given velocity only all particles with size 
r < rc(v ). At an instant of time, a moving boundary 
will, therefore, be in contact with two types of 
particles, namely the thermally distributed particles 
for r < rc(v ) and the volume distribution of par- 
ticles with r >re(v),  to which the boundary is 
attached temporarily during its motion. The total 
number of particles per unit area on a boundary 
moving with velocity v is 

f0 f + ~ 
Ntot = ~ib(r) dr ri~(r)2r dr. (35) 

¢ 

Both kinds of particles, however, have quite a differ- 
ent effect on boundary migration. While the small 
particles, which migrate with the boundary, reduce 
the effective driving force, owing to their drag as 
demonstrated in Section 2.1, the large statistically 
touched particles constitute a frictional force, which 
determines the mobility of a free moving boundary in 
a volume containing a particle distribution ri~(r), 
r > r c .  

With increasing boundary velocity the number of 
particles attached to the boundary diminishes so that 
the net drag effect decreases, while the frictional 
forces increase owing to a growing number of 
contacted but unattached particles. Therefore, the 
dependence of boundary velocity on driving force 
does not reveal a discontinuity as in Fig. 2, rather it 
will continuously change between the two branches 
pertaining to the loaded and free moving boundary 
(lower curve in Fig. 7). Conversely, if the bound- 
ary slows down, more and more particles with 

v f S  

ed_ 

AF 

Fig. 7. Schematic dependency of grain boundary velocity 
on driving force for grain boundary motion through a 

particle containing volume. 
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increasing size become attached to the boundary. 
However, the velocity where a particle becomes at- 
tached to a more freely moving boundary is attained 
at a lower driving force than the one at which 
particles of the same size became detached from the 
more loaded boundary (upper curve in Fig. 7). There- 
fore, a hysteresis of v(AF) is also obtained from grain 
boundary motion in a particle containing volume, 
and qualitatively the same conclusions hold as for a 
particle containing boundary in a pure single phase 
crystal, as treated in Section 2.1. 

3. DISCUSSION 

3.1. The limiting grain size during grain growth 

Particle drag will always affect grain boundary 
motion in two phase systems except at driving forces 
high enough to completely detach particles from the 
boundary. Pronounced effects ought to be expected 
for cases, where a transition from a free to a loaded 
boundary occurs. This is likely to happen, if the 
driving force drops or grain boundary migration 
slows down during the process like during continuous 
grain growth or even primary recrystallization with 
concurrent strong recovery. The net effect of particle 
drag on grain growth ought to be slower kinetics and 
a final grain size smaller than predicted by the Zener 
drag. It would be difficult to extract the particle 
influence on grain growth kinetics, since no difference 
in the time exponent of grain growth kinetics is 
expected as long as the boundary moves entirely free 
or fully loaded. However, the activation energy ought 
to be different from particle drag controlled motion, 
since then the boundary migration rate is controlled 
by the particle mobility, which is likely to have an 
activation energy different from the mechanism of 
grain boundary motion. However, there is little data 
about the diffusivitiy in particle/matrix interfaces, 
hence there is no unambiguous distinction between 
the processes from the value of the activation energy. 
For more information on the controlling mechanisms 
it would be necessary to conduct boundary migration 
experiments in bicrystals at different temperatures 
and pressures, i.e. to determine both the activation 
energy and the activation volume of the controlling 
process. 

There ought to be a noticeable influence on the 
final grain size, however. According to Zener the final 
grain size (radius Re) is obtained when the Zener 
drag force 3fT/(2rp) balances the driving force 
2~)/Rf, hence Rf=4rp/(af). Usually, this is not 
observed in grain growth experiments, rather the 
final grain size for continuous grain growth is 
found considerably smaller than predicted by Zener 
[17]. This can be readily understood from particle 
drag, in terms of Fig. 7. At large driving forces 
the boundary moves essentially freely. With in- 
creasing average grain size the driving force 
decreases and the grain boundaries slow down. 

Eventually they will be moving slowly enough to 
be caught up by the particles. This drastically re- 
duces the boundary migration rate, which although 
theoretically finite, will become unmeasurably small. 
Since the boundary is loaded with particles, it will 
cease to move at a much smaller grain size than 
predicted by Zener. 

3.2. The generalized drag concept 

The theory presented for particle drag is very akin 
to the solute drag theory, developed some thirty years 
ago for the drag by solute atoms on grain boundaries 
in impure materials [18-20]. In fact, the solute drag 
theory in its most simple form exactly corresponds to 
the particle drag theory with the particle size corre- 
sponding to the size of a solute atom. The drag, 
however, is not confined to spherical or differently 
shaped foreign constituents. Equally, surface grooves 
can be dragged along and will exert respective retard- 
ing forces on the boundary. Therefore, the particle 
drag concept can be extended to any mobile obstacle 
of grain boundary motion, and, in general, there will 
always be a wide variety of obstacles, including solute 
atoms, particles of different size and coherency and 
eventually, surface grooves. 

When considering the net effect of these obstacles 
on grain boundary motion and therefore, basically 
for microstructure development, there is a major 
difference to the current understanding of static 
obstacle-boundary interference. The impact of im- 
mobile obstacles on microstructure evolution is 
essentially described by the distribution of their 
spacing. In the more generalized concept of mobile 
obstacles, it is not the distribution of their spacing 
rather it is the distribution of their mobilities that 
controls their interaction with lattice defects like 
grain boundaries and, therefore, microstructure 
development. As a matter of fact, these two ap- 
proaches although seemingly similar, are quite differ- 
ent in their influence. While the static distribution 
of immobile obstacles invariably determines the 
interaction and final microstructure under any 
external condition, the mobility of obstacles is far 
from being constant, rather it will depend strongly 
on temperature, and the mechanism of migration 
may change with size, geometry and composition of 
the obstacles as well as temperature. Of course, 
this complicates considerably the description of 
microstructure evolution, but at the same time, it 
will open the spectrum of variety and, therefore, 
flexible microstructure control. 

4. CONCLUSIONS 

1. A theory of grain boundary motion in systems 
with mobile particles is put forward. Different 
mechanisms of grain boundary-particle inter- 
action and the corresponding attraction forces 
are introduced. 
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2. The boundary migration behavior can be dis- 
cussed in terms of  the dimensionless parameter 

For  fl < 1 (small particles) boundary motion is 
controlled by boundary mobility (mb)  , but for 
fl ~> 1 (large particles) the boundary velocity is 
determined by particle density a ( r )  and particle 
mobili ty rap(r). 

3. Particles can detach from the boundary,  if the 
driving force exceeds the attraction force, but 
can be reattached to the boundary when the 
boundary velocity drops below a critical value. 
The points of  detachment and at tachment are 
not  identical, giving rise to a hysteresis. 

4. Due to this hysteresis, a curved grain boundary 
tends to flatten under the influence of  particle 
drag. 

5. The theory can be qualitatively extended to a 
volume distribution of  particles. In this case the 
velocity~triving force dependency is not  linear 
any more, but still exhibits a hysteresis. 

6. The theory can qualitatively account for the 
observed deviation of  final grain size during 
grain growth from the Zener approximation. 

7. The theory can be generalized to all kinds of  
mobile obstacles, including solute atoms and 
thermal grooves. For  mobile obstacles, grain 
boundary behavior and eventually microstruc- 
ture evolution is not  any more determined by 
the distribution of obstacle spacing, rather than 
by the distribution of  obstacle mobilities. 
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APPENDIX 

As an example we will determine the mobility of a particle 
of spherical shape (radius r) when the atomic transfer is 
limited by surface (interface) diffusion. We use the approach 
given in [4] where the equation of balance of the free energy 
was found from the condition that the work completed in 
a unit of time on the side of the boundary above the particle 
due to the influence of the force, has to equal the energy 
dissipated by single atoms 

AF" V = tlfaVavsdx dz (AI) 

where V is the velocity of the particle, fa(x) is the thermo- 
dynamic force affecting a single atom at points of the surface 
with coordinate x,z; V a is the diffusion velocity of the 
atoms, v s is the surface density of atoms, S is the integration 
path. For a homogeneous isotropic surface (v s = const, 
Ds--the diffusion coefficient does not depend on coordi- 
nates) and allowing for the Einstein equation yields 

A F . v - v s k T I ~ / ~ - x 2  t r V:dxdz. (A2) 

The velocity V is related to the rate at which the interface 
y(x, z) bends itself 

[ [~x]2] '/2 dy OyOx Oy 
Vsf~ ~V~ox dyot 1+ ~ 3t ~x 3t =--Ox V 

(A3) 

f~ is the atomic volume. 
Since Va(+ oo, t )=  0 and y(+ oo, t )=  0, the mobility of 

the particle will be 

= y2 dx dz - 
mp(r) ~ -  LJ  ~/r~-x-2 r - ~ "  

(A4) 


