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Introduction

Dissolution of voids is a classical problem in the theory of sintering. The foundations of the theory were
established by Frenkel, Pines and Geguzin (see Refs. 1 and 2 for a review). However, an important
aspect of the problem appears to have been overlooked by previous workers. In a recent paper, the
present authors identified a mechanism which inhibits processes associated with vacancy generation
during grain growth, especially in fine grain sized materials [3]. The essence of the mechanism is the
rise of the free energy of the system due to vacancy production in the course of defect ‘dissolution’
(decrease of the total area of grain boundaries) which under certain conditions may inhibit the rate of
the primary process. A similar effect may also be operative in the case of void dissolution which is
accompanied by a massive release of vacancies into the surrounding bulk of the material. In this paper
we consider the conditions for intermittent temporary arrest of the void dissolution process leading to
an effective decrease of the rate of dissolution.

1. The Model

We consider an ensemble of identical voids of radius R in an otherwise uniform solid. The number of
voids per unit volume, n, is assumed not to change during the process. The void size R and n are related
to the volume f of voids (porosity) through

f 5
4pR3

3
n. (1)

Introducing the surface energy per unit area,s, one can express the Gibbs free energy of the system of
voids and vacancies, G, as [3]

G 5 4pR2sn 1 G~ceq! 1
1

2

NkT

ceq ~c 2 ceq!2. (2)

In eq. (2), G is given per unit volume; the use of a series expansion of the Gibbs free energy of the
vacancy sub-system restricted to the quadratic term in c-ceq implies that the vacancy sub-system is not
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too far from equilibrium [3]. Here ceq is the thermal equilibrium vacancy concentration, N is the number
of atomic sites per unit volume, k is the Boltzmann factor and T the absolute temperature.

To check the thermodynamic feasibility of decerease of void radius, we investigate the sign of the
derivative of G with respect to time t which reads:

Ġ 5 8pRsnṘ1
NkT

ceq ~c 2 ceq!ċ (3)

In order to consider the rate of variation with time of the radius of an individual void,Ṙ, we write for
the vacancy flux into the bulk:

j 5 2DnN
cS 2 c#

R
(4)

Here Dv is the vacancy diffusivity in the bulk; cs and c# are the vacancy concentrations in close proximity
of the void surface and in the bulk far away from it, respectively. It is assumed that the voids are not
located at such vacancy sinks as dislocations or cell, subgrain or grain boundaries. An individual void
and its vacancy atmosphere are sketched in Fig. 1.

The rate of change of the void radius follows from the balance of volume lost by the void and
transferred to the bulk by the vacancies produced:

2DnNV
cS 2 c#

R
4pR2 5 4pR2Ṙ (5)

or

Ṙ 5 2DnNV
cS 2 c#

R
. (6)

HereV denotes the volume of a vacancy.
To calculate the vacancy concentration in the bulk,c#, we introduce the radius of the ‘catchment

region’ L of an individual void which is defined by

Figure 1. A schematic picture of a void with a vacancy atmosphere (black dots). The grain boundaries shown represent one
possible type of sinks.
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4p

3
L3n 5 1 (7)

As L .. R, the concentrationc# can be assumed to prevail in practically the entire region of radius L.
The variation ofc# with time can be considered to result from a competition between vacancy ‘injection’
from the void and losses to bulk sinks. The rate of increase of the vacancy content in the bulk due to
vacancy injection,cG1, thus follows from

4p

3
L3cG 1 5 4pR2Dn

cS 2 c#

R
(8)

which, using eq. (7), yields

cG 1 5 4pRnDn~cS 2 c# !. (9)

The rate of decrease ofc# due to vacancy annihilation at sinks (e.g. edge dislocations or grain
boundaries) is given by

cG 2 5 2
Dn

d2 c# (10)

where d denotes the sink spacing. The sinks may be associated with dislocations, cell, subgrain or grain
boundaries. The sinks are assumed to be unsaturable and the vacancy concentration at sinks is taken to
be equal to zero. Finally, the equation for the time derivative ofc# reads

cG 5 4pRnDn~cS 2 c# ! 2
Dn

d2 c# . (11)

Our aim is now to solve the set of coupled equations (6) and (11) and to assess the sign of the time
derivative of G,

Ġ 5 8pRsnṘ1
NkT

ceq ~c# 2 ceq!cG , (12)

cf. eq. (3). The vacancy concentration at the void surface, cS, is given by the Gibbs-Thomson equation

cS 5 ceq expS2Vs

kTRD . (13)

2. Arrest of Void Dissolution

Some preliminary conclusions can already be made if the time derivatives of R andc# with respect to
time are substituted from eqs. (6) and (11) into eq. (12). This yields

Ġ 5 4pNnDnRkT~cS 2 c# !H2
2Vs

kTR
1

c# 2 ceq

ceq F1 2
1

4pnd2 R
z

c#

cS 2 c#GJ (14)

Equation (14) is a key to the understanding of the inhibiting effect of vacancies in the void dissolution.
At the very beginning of the process, as long asc# is still close toceq, the sign ofĠ is determined by
the first term in the curly brackets, i.e. it is negative and, as could be expected, void dissolution is
promoted thermodynamically. However, with the growth ofc# due to vacancy emission, the second term
in the curly brackets gains on importance and, for sufficiently large d when the vacancy removal to
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sinks is not efficient, the expression in the curly brackets may become positive. The dissolution of voids
will be suppressed when this condition is reached.

To investigate this behaviour in more detail, we solve the set of differential equations forR andc#,
eqs. (6) and (11). Combining eqs. (6) and (11) into

dc#

dR
5 24p

R2

V
(15)

yields upon integration

c# 5 ceq 5
4p

3
~Ro

3 2 R3!
n

NV
. (16)

It can easily be seen that eq. (16) is an expression of the fact that the entire volume lost by the voids
is accommodated by the vacancies in the bulk. Now, using a series expansion of R near its initial value
Ro in eq. (11) and solving the resulting differential equation inc# we obtain

c# 5 ceq exp~2t/ t̂! 1 c`@1 2 exp~2t/ t̂!# (17)

where

c` 5
4pnDnRo

4pnDnRo 1 Dn/d
2 S1 1

2Vs

kTRo
Dceq (18)

and

1

t̂
5 4pnDnRo 1

Dn

d2 (19)

Strictly speaking, eq. (17) should only be considered for sufficiently small times for which linearisation
with respect to the difference R2 Ro used in the derivation is admissible. The validity of this
assumption will be checked below. It should be noted that in deriving eq. (17) the quantity 2Vs/kTRo

was assumed to be small compared to unity. For typical parameter values and the temperature around
1000K, the latter condition is fulfilled for R larger than 1026 cm.

As the quantitycs 2 c# is always positive, the sign ofĠ is determined by the expression in the curly
brackets which reads

C 5 2
2Vs

kTR
1

c# 2 ceq

ceq F1 2
1

4pnd2 R
z

c#

cS 2 c#G > 2
2Vs

kTRo
1

Dn

d2

~x 2 1!2

x
z t (20)

where

x 5 4pnd2
2Vs

kT
(21)

Obviously, at very small times,C is negative, and so isĠ. However, after a time

t* 5
2Vs

kTRo
z

x

~x 2 1!2

d2

Dn

(22)

the void dissolution will be arrested. Only forx tending to unity will the time to locking, t*, be tending
to infinity.
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Now we should prove that two conditions used in the above derivation are fulfilled up to the time
t*. These are:

(i) ?R~t* ! 2 Ro?/Ro 5
c# ~t* ! 2 ceq

4pRo
2

NV

n
,, 1 (23)

and

(ii)
t*

t̂
,, 1 (24)

Using eq. (17) linearised with respect to time, as well as eqs. (18), (19), (21) and (22), these inequalities
assume the form

2Vs

kTRo
z

NVceq

4pRo
3n

x

~x 2 1!2 ,, 1 (25)

and

2x ,, 1 (26)

Inequality (25) is fulfilled for allx not too close to unity, particularly, forx much smaller than1⁄2 as
required by the second condition, i.e. inequality (26). Hence, the validity of the expression for t*, eq.
(22), is warranted forx ,, 1⁄2. For most physically relevant situations the latter condition is fulfilled,
at least in the inirial stages of the process. Indeed, rewritingx asx 5 ( fo/3)(d/Ro)2(2Vs/(kTRo)),
where fo is the initial volume fraction of voids, one can see that for fo of the order of percent and Ro

of the order of 1026 cm or larger, this condition is safely fulfilled for d of the order of 1025 cm. This
sink spacing compares favourably with a typical cell size or the average dislocation spacing.

A typical time for vacancy removal after locking is given byd2/Dv, cf. eq. (11). After this time, void
dissolution will re-start leading to renewed injection of vacancies into the surrounding bulk. Repeated
locking and unlocking of the process will ensue. The system is ‘open’ for the void dissolution process
to occur within the time t*, that is for a small fraction ofd2/Dv, cf. eq. (22), and ‘locked’ for a time of
the order ofd2/Dv.

3. Discussion and Conclusions

The effect of vacancies generated during void dissolution on the behaviour of the ‘parental’ voids was
considered. It was shown that the contribution of vacancies injected into the bulk to the Gibbs free
energy must have an inhibiting effect on the void dissolution. This inhibition is of a cyclic nature. After
a time t*, the process of void dissolution gets suppressed by the vacancies. It takes the system a much
larger time to remove the vacancies to the sinks. It is interesting to note that the time t* during which
the void dissolution process is active increases with each cycle as the void radius becomes smaller and
smaller.

For simplicity, an ensemble of identical voids was considered. However, the essence of the
phenomenon is captured by the simplified model. In an ensemble of voids with a size distribution, the
void activity time t* between two successive arrests of dissolution will be different for voids of different
radius. According to eq. (22), the activity time of small voids will be larger than that of bigger ones.
This will change the evolution kinetics of an ensemble of voids and the void size distribution. It would
be of interest to re-consider the Lifshitz-Slyozov-Wagner kinetics of an ensemble of voids in this light.
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One obvious area where the effect considered may be of particular interest is sintering where the
reduction of porosity is a problem of paramount importance.

Acknowledgments

Support from the Deutsche Forschungsgemeinschaft (DFG Grant 438 113/130/0) and from the Inter-
national Office of the BMBF (Project AUS-032) is gratefully acknowleged. One of the authors (YE)
would like to thank the Alexander von Humboldt Foundation for generous support through a Humboldt
Research Award.

References

1. E. Geguzin, Physik des Sinterns, VEB Deutscher Verlag fu¨r Grundstoffindustrie, Leipzig (1973).
2. H. E. Exner and E. Arzt, in Physical Metallurgy, ed. R. W. Cahn and P. Haasen, p. 2627, North- Holland, Amsterdam

(1996).
3. Y. Estrin, G. Gottstein, and L. S. Shvindlerman, Acta Mater. submitted.

INHIBITION OF VOID DISSOLUTION420 Vol. 41, No. 4


