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AbstractÐThe inhibiting e�ect of vacancies on the very process in which they are generated is considered
from a thermodynamic viewpoint. Examples of such processes treated here in some detail are grain growth
and pore dissolution. It is shown that these processes are inhibited due to vacancy generation. A particular
scenario discussed implies intermittent ``locking''. After a period of uninhibited kinetics the process comes
to a halt due to a thermodynamic back force ``locking'' it. It can only re-start once the vacancies produced
are removed by di�usion. This repetitive cycle leads to an overall reduction in the rate of the kinetic pro-
cess in question. Speci®c predictions with regard to grain growth in ®ne-grained (particularly nanocrystal-
line) materials and void dissolution kinetics in sintering are made. A third example considered is vacancy
drag on a moving individual grain boundary. The magnitude of the drag is re-assessed by taking into
account the Gibbs free energy of the vacancies generated. # 1999 Acta Metallurgica Inc. Published by
Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

It is a very common situation in materials science

that vacancies are generated as a by-product of a
kinetic process. Vacancy production by moving jogs
on dislocations during plastic deformation, by mi-

grating grain boundaries in grain growth, by a pro-
gressing solid/liquid interface in solidi®cation or by
shrinking voids in sintering are but a few examples.

The excess free volume the system has to get rid of
in such kinetic processes is released as vacancies
which have to be accommodated by the crystal
bulk. While the emergence of vacancies in these or

similar processes has been appreciated in the litera-
ture, see, e.g. Refs [1±5], one aspect of vacancy
assimilation remains largely neglected. It is the con-

tribution of the vacancies generated to the total free
energy of the system. This may produce a general-
ized thermodynamic force which in¯uences the very

kinetic process by which vacancies are generated.
The aim of this paper is to emphasize the signi®-
cance of this e�ect in general and to consider
examples of particular kinetic processes where it

can be of importance.
In most general terms, the Gibbs free energy G of

a system with vacancies can be written as

G � Gnon-vac � Gvac �1�

where Gnon-vac is the non-vacancy part of the Gibbs
free energy and Gvac is the contribution due to
vacancies. The latter quantity can be calculated as

the free energy of an ideal solution of vacancies in
the crystal written as

Gvac � nHf
v ÿ kT ln

N!

�Nÿ n�!n!
: �2�

Here n and N are the number of vacancies and the

number of atomic sites per unit volume, respect-
ively, Hf

v is the vacancy formation enthalpy, k is the
Boltzmann constant and T the absolute tempera-

ture. If one is interested in vacancies of concen-
tration c not too far from its thermodynamic
equilibrium value ceq, a series expansion of G with

respect to cÿ ceq can be truncated after the quadra-
tic term. The corresponding expression for G can be
obtained in the following simple exercise. Applying
the Stirling formula for large values of N, Nÿ n

and n, one has

dGvac

dn
� Hf

v � kT ln
n

Nÿ n
�3�

and

d2Gvac

dn2
� kT

n

�
1� n

Nÿ n

�
: �4�

In thermodynamic equilibrium, when dGvac=dn � 0,
one has from equations (3) and (4)
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�
d2Gvac

dc2

�eq

� N 2

�
d2Gvac

dn2

�eq

� NkT

ceq

�
1� exp

�
ÿ Hf

v

kT

��
� NkT

ceq
: �5�

Accordingly, one has for the Gibbs free energy

G � Gnon-vac � Gvac�ceq � � 1

2

NkT

ceq
�cÿ ceq �2: �6�

As mentioned above, higher terms in cÿ ceq have

been neglected. It should be stressed that this com-
pact formula for the vacancy part of the free energy
embraces both the vacancy formation enthalpy term
and the entropy contribution.

The above formulation makes it possible to look
at the kinetic processes involving vacancies from a
viewpoint of their thermodynamic feasibility.

Obviously, a kinetic process will be permitted ther-
modynamically if the derivative of G with respect to
time, t, (denoted by a dot) is negative. This criterion

reads

_G � _G non-vac � NkT

ceq
�cÿ ceq � _c < 0: �7�

The time derivative of the vacancy concentration, _c ,
can be written as

_c � _c� ÿ _cÿ �8�
representing a competition between the vacancy
production ( _c�) and the vacancy removal ( _cÿ)
rates. While the latter quantity can be expressed in
a generic form

_cÿ � ÿDv

d 2 �cÿ csink � �9�

where Dv is the vacancy di�usivity, d is the sink
spacing and csink the vacancy concentration at a
sink, the vacancy production rate depends on the

particular mechanism of vacancy generation and is
related to the rate of variation of the ®rst, ``non-
vacancy'', term of the free energy, _G . In what fol-

lows, kinetic processes which are signi®cantly
a�ected by this coupling with their ``by-product'',
i.e. the vacancies produced, will be investigated.

2. VACANCY EFFECTS ON THE KINETICS OF
VACANCY-GENERATING PROCESSES

2.1. Grain growth in ®ne-grained materials

Following Ref. [9], we start our consideration by
looking at the grain boundary migration as a main
mechanism of grain growth. The process is driven

by the tendency of the system of grain boundaries
to reduce the total grain boundary area. As a ``by-
product'' of this process vacancies are released into

the crystal bulk. Indeed, the density of a grain
boundary is lower than that of the bulk, see e.g.
Refs [6, 7]. The excess free volume released during
the reduction of the grain boundary ``phase'' has to

be accommodated by the bulk. It is natural to
assume that this excess volume is assimilated by the

bulk, primarily in the form of vacancies. This
assumption is supported by recent computer simu-
lations of grain boundary motion [8]. The supply of

vacancies by moving grain boundaries may produce
a vacancy supersaturation in the bulk increasing the
Gibbs free energy and producing a thermodynamic

force on the boundary. As can be expected intui-
tively, particularly by analogy with the Le Chatelier
principle, this thermodynamic force will resist grain

boundary migration. Under certain conditions con-
sidered below this e�ect may be as strong as to tem-
porarily suppress grain growth altogether.
The free energy of the grain boundary sub-system

can be written as

GGB � 3

2
� s
R
: �10�

This is a particular expression of the quantity
Gnon-vac for the case under consideration. Here s is

the free energy per unit area of grain boundary and
R is the average grain size. Substituting GGB for
Gnon-vac in equation (7) we obtain

_G � ÿ3
2

s
R2

V� NkT

ceq
�cÿ ceq � _c < 0: �11�

The grain boundary velocity, or the grain growth

rate V � dR=dt, is considered to be positive.
The vacancy generation rate can be represented

as

_c� � 6bd
R2

V �12�

where b is the relative excess free volume of the
boundary associated with a decreased density of a
boundary as compared with the bulk, and d is the

boundary width. Substituting equations (9) and (12)
into equation (8) yields

_c � 6bd
R2

Vÿ Dv

d 2 �cÿ csink �: �13�

In the problem under consideration, sinks can be
identi®ed with dislocations, grain boundaries them-

selves, or (particularly in thin ®lms) the outer sur-
face.
The solution of equation (13) reads

cÿ c0 � �ci ÿ c0�exp
ÿ
ÿDvt=d

2
�
� 6b

�
d

R

�2

�
�
Vd
Dv

��
1ÿ exp

ÿ
ÿDvt=d

2
��

�14�

where ci denotes the initial vacancy concentration in
the bulk, which in the following will be taken to be

equal to the equilibrium vacancy concentration ceq.
For the case of tWt � d 2=Dv of interest here (see
below), equation (14) can be linearized in time and
reduces to
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c � ci � 6bdVt=R2: �15�
Substitution of equation (15) into inequality (11)
yields

ÿ s
R2

V� 24NkT

ceq

�
bdV
R2

�2

t < 0: �16�

Evidently, this inequality is satis®ed, i.e. grain
growth can occur, for su�ciently small t. However,

the inequality is violated for

trt� � 1

24
� sceqR2

NkT�bd�2V �17�

which means that grain growth gets arrested at

t � t�.
The assumpion that t�Wt � d 2=Dv used above

can be rewritten as

1

24

�
R

d

�2
R

NkTZ�bd�2
DSD

m
W1: �18�

Here DSD � ZceqDv � D0 exp�ÿHSD=kT � is the
coe�cient of bulk self-di�usion, Z being the coordi-
nation number and HSD the corresponding acti-

vation enthalpy given by the sum of the activation
enthalpy for vacancy migration and vacancy for-
mation; the intrinsic grain boundary velocity V has

been replaced with ms/R where m is the grain
boundary mobility [10]. The validity of this inequal-
ity for ®ne-grained materials was demonstrated in

Ref. [9].
With the above results the following scenario of

grain growth was suggested in Ref. [9]. Once
started, grain growth will be arrested after a time

t*. Grain boundaries will remain stationary
(``locked'') for a time tÿ t� � t during which time

grain growth induced vacancy concentration will
relax back to ceq. The thermodynamic inhibition of
grain growth will thus be removed and grain

boundary motion will re-start. The sequence of
grain boundary ``locking'', relaxation of vacancy
concentration in the bulk, and grain boundary

motion will then be repeated cyclically. In other
words, the motion of grain boundaries will occur in
a jerky way. The intrinsic grain growth rate V,

which in the absence of ``vacancy self-locking''
would be determined by the driving force on the
grain boundaries (that is, by the capillary force),
will be modi®ed. The e�ective grain growth rate will

be given by Veff � �t�=t� � V. This is the overall
average grain growth rate which would be observed
in the experiment if the detail of grain boundary

motion (i.e. its jerky character) was not resolved.
The kinetics of grain growth and the corresponding
variation of the vacancy concentration in the bulk

are illustrated by a schematic diagram in Fig. 1.
The jerky grain growth scenario outlined above

only applies if the ratio t�=t is small. If t* is com-

parable with t, the grain boundary motion will
become continuous. The condition expressing this
change in the character of the grain boundary
motion reads

1

24
� sDSD

NkTZ�bd�2V �
�
R

d

�2

� 1: �19�

Below the critical grain radius Rc which can be

obtained from equation (19) the grain growth is

Fig. 1. Variation with time of the grain growth rate V (a) and the vacancy concentration c (b) (sche-
matic). The dashed lines show a ``smoothed'' grain boundary velocity pro®le in a real situation.
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a�ected by the self-locking described; above this
grain size, the ordinary grain growth driven by

capillary forces will prevail. As seen from equation
(19), the critical radius depends on the vacancy sink
spacing d which may be determined by the average

distance between dislocations or the dislocation cell
size. However, for ultra®ne grain sized materials,
where R can be identi®ed with d, the critical radius

can be written as

Rc � 24NkTZ�bd�2 m

DSD

: �20�

The above considerations implied tacitly that
vacancies generated during grain growth form a

``solid solution'', rather than a second phase, i.e.
voids. Using equations for the time to void nuclea-
tion [11], it can be demonstrated that even with the

highest vacancy concentration produced, namely
c(t*), the time to form a stable nucleus of a void is
much larger than the time t* itself.
Several predictions regarding the jerky motion

regime made in this section (see also Ref. [9])
deserve special mention:

1. The temperature dependence of the e�ective vel-

ocity Ve� introduced above

Veff � t�

t
� V � 1

24
� sDSD

NkTZ�bd�2 �
�
R

d

�2

�21�

is primarily determined by that of the coe�cient
of self-di�usion. In other words, di�erent acti-

vation enthalpies should be observed for small
and large grain sizes. Indeed, for small grain size
where jerky motion prevails, the activation

enthalpy for self-di�usion should be observed,
while for large grain size corresponding to con-
tinuous grain boundary motion the activation
enthalpy for the intrinsic grain boundary mobi-

lity will be found. The latter is generally di�erent
from the activation enthalpy for self-di�usion
[10].

2. As long as R remains smaller than Rc, an accel-
eration of grain growth can be expected, as
suggested by equation (21) showing a quadratic

dependence of the grain growth rate on R.
However, on approaching the critical grain
radius Rc, the ``normal'' regime of continuous

grain growth driven by the surface tension will
set in leading to the inverse R dependence of the
grain growth velocity.

3. In nanocrystalline materials no vacancy sinks are

available in the bulk of the grains due to the
absence of dislocations there. The sink spacing d
is to be identi®ed with the grain size R yielding a

time independent value of the average grain
growth rate Ve�, cf. equation (21)

Veff � 1

24
� sDSD

NkTZ�bd�2 :

This indicates that in the initial stage of grain

growth when R is smaller than Rc, the rate of
growth is time-independent, i.e. the grain size

should be linear in time. This prediction is sup-
ported by experiments on grain growth in nano-
crystalline iron [12]. Moreover, the critical grain

size Rc estimated for di�erent temperatures using
the present model is in good accord with the
measured values [12] of the grain size limiting

the linear range of the R vs t curve.

It should be noted that the discontinuous character
of grain growth may not be the only mode of the

growth kinetics. An alternative would be continu-
ous growth, with a rate reduced by vacancy gener-
ation e�ect, following a ®rst ``self-locking'' event.

This ``degenerated'' jerky motion variant will be
analysed elsewhere.

2.2. Kinetics of void dissolution

Dissolution of voids is a classical problem in the
theory of sintering. The foundations of the theory
were established by Frenkel, Pines and Geguzin (see

Refs [5, 13] for a review). However, the vacancy in-
hibition e�ect discussed above appears to have been
overlooked by previous workers. Such an e�ect

may also be operative in the case of void dissol-
ution which is accompanied by a massive release of
vacancies into the surrounding bulk of the material.
In this section the conditions for intermittent tem-

porary arrest of the void dissolution process leading
to an e�ective decrease of the rate of dissolution is
considered following the treatment of the problem

in Ref. [14]. The essence of the e�ect can be studied
for an ensemble of identical voids of radius Rvoid in
an otherwise uniform solid. The number of voids

per unit volume, nvoid, is assumed not to change
during the process. The void sizes Rvoid and nvoid
are related to the volume fraction, f, of voids (por-

osity) through

f � 4pR3
void

3
nvoid: �22�

Introducing the surface energy per unit area, ss,
one can rewrite equation (6) for the Gibbs free

energy of the system of voids and vacancies, G, as
[3]

G � 4pR2
voids

snvoid � G�ceq � � 1

2

NkT

ceq
�cÿ ceq �2: �23�

For the rate of variation of G it follows

_G � 8pRvoidssnvoid
_R void � NkT

ceq
�cÿ ceq � _c : �24�

In order to consider the rate of variation with time

of the radius of an individual void, _R void, we write
for the vacancy ¯ux into the bulk:

j � ÿDvN
cS ÿ �c

Rvoid

: �25�

Here cS and �c are the vacancy concentrations in
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close proximity of the void surface and in the bulk
far away from it, respectively. It is assumed that the

voids are not located at such vacancy sinks as dislo-
cations or cell, subgrain or grain boundaries. An in-
dividual void and its vacancy atmosphere are

sketched in Fig. 2.
The rate of change of the void radius follows

from the balance of volume lost by the void and

transferred to the bulk by the vacancies emitted:

ÿDvNO
cS ÿ �c

Rvoid

4pR2
void � 4pR2

void
_R void �26�

or

_R void � ÿDvNOvac
cS ÿ �c

Rvoid

: �27�

Here Ovac denotes the volume of a vacancy.

To calculate the vacancy concentration in the
bulk, �c , we introduce the radius of the ``catchment
region'' LwRvoid of an individual void which is

de®ned by

4p
3
L3nvoid � 1: �28�

The vacancy concentration �c within this catchment
region is assumed to be uniform. The variation of �c
with time can be considered to result from a compe-
tition between vacancy ``injection'' from the void

and vacancy losses to bulk sinks. The rate of
increase of the vacancy content in the bulk due to
vacancy injection from the void, _�c

�
, is obtained

from the balance equation

4p
3
L3 _�c

� � 4pR2
voidDv

cS ÿ �c

Rvoid

�29�

which, using equation (27), yields

_�c
� � 4pRvoidnvoidDv�cS ÿ �c �: �30�

The rate of decrease of �c due to vacancy annihil-
ation at sinks (e.g. edge dislocations or grain
boundaries) is given by

_�c
ÿ � ÿDv

d 2
�c �31�

cf. equation (9). The di�erence is that the vacancy

concentration at sinks has been assumed to be zero
implying sinks of in®nite strength. The sinks may
be associated with dislocations as well as with cell,

subgrain or grain boundaries. Finally, the equation
for the time derivative of �c reads

_�c � 4pRvoidnvoidDv�cS ÿ �c � ÿ Dv

d 2
�c : �32�

To assess the sign of the time derivative of G, the
solutions of the set of di�erential equations for

Rvoid and �c are substituted into equation (24) from
equations (27) and (32). The vacancy concentration
at the void surface, cS, is taken in the form of the

Gibbs±Thomson equation

cS � ceq exp

�
2Ovacss

kTRvoid

�
: �33�

The resulting equation for the rate of variation of G
reads [14]

_G � 4pNnvoidDvRvoidkT�cS ÿ �c �C �34�

where

Fig. 2. A schematic picture of a void with a vacancy atmosphere (black dots). In this particular
example, vacancy sinks are associated with the grain boundaries shown.
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C � 2Ovacss

kTRvoid

� �c ÿ ceq

ceq�
1ÿ 1

4pnvoidd 2Rvoid

� �c

cS ÿ �c

�
: �35�

Obviously, the sign of _G is determined by that of
C. Under certain assumptions discussed in Ref. [14]
[in particular, the assumption of the smallness of

2Ovacss=kT�Rvoid�0 where (Rvoid)0 is the initial void
radius] and for su�ciently small times, equation
(35) can be rewritten as

C � ÿ 2Ovacss

kT�Rvoid �0
� Dv

d 2

�wÿ 1�2
w

� t �36�

where

w � 4pnvoidd
2 2Ovacss

kT
: �37�

Obviously, at very small times, C is negative, and

so is _G . However, after a time

t� � 2Ovacss

kT�Rvoid �0
� w

�wÿ 1�2
d 2

Dv

�38�

the void dissolution will be blocked. Apart from the

case when w tends to unity (when the time to lock-
ing of void dissolution tends to in®nity), t* is smal-
ler than the characteristic vacancy removal time

d 2=Dv. As in the previous example, the kinetic pro-
cess under consideration is expected to be discon-
tinuous. It will take the system a time of the order

of d 2=Dv to dispose of the vacancy supersaturation
produced during the time t*. Voids will be ``locked''
during this vacancy removal time. Then void dissol-
ution will re-start leading to renewed injection of

vacancies into the surrounding bulk. Repeated lock-
ing and unlocking of the process will thus occur.
The system is ``open'' for the void dissolution pro-

cess to occur within the time t*, that is for a small
fraction of the time d 2=Dv and ``locked'' for a time
of the order of d 2=Dv. The inhibition of the void

dissolution rate will thus be governed by a (typi-
cally small) factor I de®ned as

I ÿ1 � t�ÿ
d 2=Dv

� � 2Ovacss

kT�Rvoid �0
� w

�wÿ 1�2 : �39�

(Indeed, it was shown in Ref. [14] that for (Rvoid)0
larger than 10ÿ6 cm w is small compared to unity.)
While an ensemble of identical voids was considered

for simplicity, the salient features of the phenom-
enon are captured by the model. In an ensemble of
voids with a size distribution, the radius dependence

of the void activity time t* between two successive
arrests of the dissolution process will change the
evolution kinetics of an ensemble of voids and the

void size distribution. It was stressed in Ref. [14]
that the Lifshitz±Slyozov±Wagner kinetics of an
ensemble of voids should be re-considered in this
light.

An example demonstrating the signi®cance of the
inhibiting e�ects of vacancies on void dissolution is

an observation of an increase of the size and the
number of voids in Cu which underwent a cyclic
heat treatment [15]. Specimens of various diameter

were repeatedly heated to 6508C with subsequent
quenching into water. The following ®ndings were
reported in Ref. [16]: (i) the total volume of voids

was linearly increasing with the number of cycles;
(ii) the void density was monotonically decreasing
towards the specimen surface, while a 2±3 mm

thick layer near the surface was practically free of
voids; (iii) in this surface layer, grain growth was
enhanced, while in the middle part of the specimens
grain growth was suppressed.

Our model can account for all these features.
Indeed, the fact that voids which were found to
form due to vacancies ``quenched'' from 6508C
were not dissolving upon reheating lends itself as an
illustration of the vacancy inhibition of void dissol-
ution. Moreover, the vacancy supersaturation as-

sociated with the vacancy injection by voids into
the bulk can be seen as a cause of grain growth
suppression in the specimen bulk. The absence of

voids in the near-surface layer can be explained by
the proximity of the free surface which promotes
e�cient removal of vacancies that otherwise would
suppress void dissolution. Finally, enhancement of

grain growth in that layer is a further argument in
favour of the concept outlined above, in particular
with regard to inhibition of grain growth by

vacancies (Section 2.1).
The e�ect discussed in this section is of special

importance in the context of sintering as the knowl-

edge of the factors determining the rate of void dis-
solution makes it possible to steer the dissolution
kinetics. One such factor is the equilibrium vacancy
concentration ceq. As seen from equation (27) upon

substitution of the solution of equation (32), the
void dissolution rate during the time t* is pro-
portional to ceq, while the inihibition factor I does

not depend on ceq [14]. Increasing ceq by doping the
material with solutes possessing a binding energy
with vacancies would thus increase the void dissol-

ution rate. Indeed, the solute e�ect on the equili-
brium vacancy concentration can be expressed by a
simple additivity rule: the total concentration of

vacancies in a solid solution is given by the sum of
the concentrations of the free vacancies and of
those forming vacancy±solute pairs. The equili-
brium concentration of vacancies in such a system

is determined by the following expression, cf. Ref.
[16]:

ceq
total � ceq

�
1� Zcsol

�
exp

�
W

kT

�
ÿ 1

��
> ceq �40�

where csol is the solute concentration and W the
solute±vacancy binding energy. Thus, an overall
enhancement of void dissolution rate due to alloy-
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ing with vacancy-binding solutes is predicted by the
present model. The e�ect of trace elements having a

large binding energy with vacancies (particularly
Sn) on the enhancement of densi®cation of Al±Cu
powders was observed by Sercombe and Scha�er

[17].

3. VACANCY EFFECT ON GRAIN BOUNDARY
MOTION

For processes considered above, the vacancies

generated lead to a thermodynamic force inhibiting
the process itself. Here a situation will be con-
sidered where this inhibition occurs as well, but is
reduced due to the entropy of the vacancies gener-

ated. We are talking here about grain boundary
motion which is accompanied with vacancy gener-
ation. Interaction of moving grain boundaries with

point defects is one of the central problems of grain
boundary migration [18±20]. Interaction of a mov-
ing grain boundary (GB) with vacancies it generates

as a ``by-product'' of the motion was investigated in
Refs [2±4]. The drag force on the boundary associ-
ated with a vacancy±boundary interaction was con-

sidered in Refs [3, 4]. However, entropy terms were
not included. Below we shall re-visit the previous
calculations taking the total Gibbs free energy into
account.

Following Ref. [4] we consider a one-atomic
model of a grain boundary moving at a velocity V.
It is assumed that the GB produces vacancies at a

rate

_qB � ÿ
cB ÿ cB0

tB

�41�

with

cB0 � ceq exp�H0=kT� �42�
where cB0 is the thermal equlibrium vacancy con-

centration in the GB, respectively, cB is the current
vacancy concentration in the GB, tB is a character-
istic ``relaxation time'' within the boundary and H0

is the binding energy between a vacancy and the
GB.
In the coordinate system moving with the bound-

ary, the di�usion equation for vacancies outside of
the boundary reads

_c � Dvc
00 � Vc 0 ÿ Dv

d 2
�cÿ ceq � �43�

where c is the coordinate and time dependent bulk

vacancy concentration. A dot and a prime denote a
derivative with respect to time t and coordinate x,
respectively. In steady state to be considered here,

equation (43) is rewritten as

Dvc
00 � Vc 0 ÿ Dv

d 2
�cÿ ceq � � 0: �44�

As the width of the vacancy pro®le around the GB
is much larger than its thickness d (of the order of

the atomic distance b), the space ahead of the
boundary (region II) will be identi®ed as x > 0 and

that in the wake of the boundary (region I) as
x < 0. While these regions are considered as two
separate continua, the GB represents a discrete (but

``in®nitely thin'') object in between. This exactly fol-
lows the concept of Ref. [4], a di�erence being the
inclusion of the bulk sink term in equation (44).

Denoting the vacancy concentration on the right
(x � �0) and on the left (x � ÿ0) ``edges'' of the
GB as c2 and c1, respectively, and using the obvious

boundary conditions

c��0� � c2; c�ÿ0� � c1; c�x421� � ceq �45�

cÿ ceq � �c2 ÿ ceq �exp

�
ÿ x

~x II

�
;

for X > 0 �region II�
�46�

and

cÿ ceq � �c1 ÿ ceq �exp

�
x

~x I

�
,

for X < 0 �region I�:
�47�

Here the characteristic decay lengths

~x I � 2��������������
1� 4a
p ÿ 1

Dv

V
;

~x II � 2��������������
1� 4a
p � 1

Dv

V

�48�

with a � �Dv=Vd �2, have been introduced. The case
considered in Ref. [4] corresponds to a � 0. For

non-zero but small values of a, it follows that

~x II � Dv=V; ~x I � Vd

Dv

d: �49�

One can see that these lengths are vastly di�erent,

i.e. the vacancy pro®le is strongly asymmetrical, the
decay in front of the GB being much faster than
behind it. In the limit of V40, the asymmetry
vanishes, as seen from equation (50).

In order to ®nd the GB vacancy concentration cB
and also determine the integration constants c1 and
c2, a ¯ux balance across the GB should be con-

sidered, as done in Ref. [4]. The balance equations
read:

_qBd � jB=II ÿ jI=B: �50�
Requiring in addition continuity of the ¯uxes at the
``edges'' of the GB [4]

jB=II � jII j�0, jI=B � jI jÿ0 �51�
(where jB/II and jI/B are the vacancy ¯uxes from the
GB into the right ``edge'' and from the left ``edge''

into the GB, respectively, while jI and jII are the
¯uxes in the respective regions of the bulk), we
come to a set of three equations:
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_qBd �
�
Dv

b
exp

�
ÿ H0

kT

�
cB ÿ Dv

b
c2

�
ÿ Vc2

ÿ
�
Dv

b
c1 ÿ Dv

b
exp

�
ÿ H0

kT

�
cB

�
� VcB �52�

�
Dv

b
exp

�
ÿ H0

kT

�
cB ÿ Dv

b
c2

�
ÿ Vc2

� ÿDv

@c

@x

����
�0
ÿV

 
c2 � @c

@x

����
�0
�b
! �53�

ÿDv

@c

@x

����
ÿ0
ÿVc1

�
�
Dv

b
c1 ÿ Dv

b
exp

�
ÿ H0

kT

�
cB

�
ÿ VcB: �54�

In these equations di�usional jumps of vacancies

into and out of the GB as well as convection ¯uxes
are included. In the expressions for the convection
¯ux at the right ``edge'' of the GB, the vacancy con-

centration at the point one atomic distance ahead
of the right ``edge'' should be taken in a discrete
formulation. This gives rise to the last term on the
right-hand side of equation (53) in the continuum

formulation. The derivatives in equations (53) and
(54) obtained from equations (46) and (47) read

@c

@x

����
�0
� ÿc2 ÿ ceq

~x II

;
@c

@x

����
ÿ0
� c1 ÿ ceq

~x I

: �55�

Substituting these expressions into equations (53)
and (54) yields

c1 �
Dv

~x I

ceq �
�
Dv

b
exp

�
ÿ H0

kT

�
� V

�
cB

Dv

b
� Dv

~x I

� V

�56�

c2 �

�
Dv

~x II

� V
b

~x II

�
ceq � Dv

b
exp

�
ÿ H0

kT

�
cB

Dv

b
� Dv

~x II

� V
b

~x II

: �57�

Further substitution of c1 and c2 from equations
(56) and (57) into equation (55) yields a solution
for the GB concentration cB. This is a somewhat

cumbersome expression and we present it here only
for a natural limit case of su�ciently small relax-
ation time, tB, for the vacancy concentration in the

GB. More speci®cally, it is assumed that the relax-
ation of the vacancy concentration in the GB to its
equilibrium value occurs much faster than else-

where, tB being much smaller than any other
characteristic time of the problem, i.e.
tBWminfd 2=Dv, Dv=V

2g. In that case cB � cB0.

Furthermore, making use of the fact that both
decay lengths ~x I and ~x II are much larger than the
atomic spacing b, expressions (56) and (57) for the
vacancy concentrations at the ``edges'' of the GB

can be simpli®ed to

c1 �
1� Vb

Dv

exp�H0=kT�

1� Vb

Dv

ceq; c2 � ceq: �58�

With the knowledge of the vacancy pro®le around
the moving GB given by equations (46)±(49) we can

calculate the vacancy drag force on the boundary.
This is done by considering the change in the free
energy of the system on a small virtual displacement
of the boundary. The concentration dependence of

the Gibbs free energy, G, is again taken in the form
of equation (6). A boundary displacement to the
right by an atomic distance b (the width of the

boundary) produces a change in the Gibbs free
energy of the system coming from three sources.
First, the left ``edge'' of the GB, where the concen-

tration was c1 enters the region with concentration
cB. This produces a free energy change
G�cB� ÿ G�c1�. Second, the GB region proper, where
the concentration was cB, enters the right ``edge''

region, with concentration c2. The attendant change
of free energy is G�c2� ÿ G�cB�. Finally, the right
``edge'' region, where the concentration was c2,

moves into the bulk where the concentration can be
expressed as

c�b� � c2 � @c

@x

����
�0
�b:

The associated change of the free energy is
G�c�b�� ÿ G�c2�. Then the total change is

DG � G�c�b�� ÿ G�c1 �

� G�c2 � � dG

dc

dc

dx

����
�0
�bÿ G�c1 �: �59�

The change of the Gibbs free energy counted per

unit volume can also be interpreted as the force per
unit area of the GB. A negative DG thus implies a
drag force, i.e. a force acting against the direction

of the GB motion. Using equation (6) and noting
that for the case under consideration the derivative
in equation (59) is zero yields for the drag force
Pdrag:

Pdrag � DG

� ÿ1
2
NkTceq

�
exp�H0=kT� ÿ 1

1� Vb=Dv

�2�
Vb

Dv

�2

: �60�

Using the inequalities exp�H0=kT �w1 and

�Vb=Dv �exp�H0=kT�W1 �61�
equation (60) can be simpli®ed to

Pdrag � DG � ÿ1
2
NkTceq

�
Vb

Dv

exp

�
H0

kT

��2

: �62�

Inequality (61) is safely ful®lled for all grain bound-
aries in Al investigated with regard to their mobility
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even with an overestimated value of H0 � 0:3 eV.
(We refer here to Al as the only material for which

a reasonably large set of data is available Ref. [21].)
It is interesting to note that the drag force calcu-

lated is signi®cantly smaller than the one found ear-

lier by LuÈ cke and Gottstein [4] where the only term
considered in the free energy was the enthalpy of
the vacancies generated, yielding

PLG
drag � ÿNHf

v�c1 ÿ c2 � � ÿNHf
vc

eqVb

Dv

exp

�
H0

kT

�
:

�63�
Here Hf

v is the enthalpy of vacancy formation. The

temperature dependence of the vacancy drag given
by equation (62) is determined primarily by the ac-
tivation enthalpies of grain boundary migration,

vacancy di�usivity and vacancy formation, as well
as the binding energy between a vacancy and a
grain boundary. Depending on an interplay of these

parameters for a given material and a particular
grain boundary, the drag may increase or decrease
with temperature.

4. CONCLUSIONS

In this paper, examples of vacancy-generating
kinetic processes were considered in which the
vacancies produced interact with the very process in

which they have been created. The thermodynamic
approach taken made it possible to assess the e�ect
of this interaction on the rate of such processes. In

two examples considered, namely grain growth in
®ne-grained materials and void dissolution, con-
ditions were found when vacancy generation inhi-

bits the underlying kinetic process. In both cases,
repetitive cycles of uninhibited vacancy generation
followed by a longer period of ``locking'' of the
process (of grain growth or void dissolution) were

predicted, its overall rate being reduced as com-
pared to that associated with the primary driving
force, i.e. grain boundary or surface energy. A num-

ber of predictions veri®able by experiment were
made. The ``degenerate'' case of a single ``locking''
event followed by continuous kinetics will be con-

sidered elsewhere.
An example of a system in which ejection of

vacancies occurs into both ``phases'' separated by
an interface is a moving grain boundary. The

vacancy drag associated with the asymmetry of the
vacancy concentration pro®le around the grain
boundary was reassessed by taking into account the

entropy terms. A signi®cant reduction of the drag
force as compared to the one predicted by consider-
ing the enthalpy terms alone was found.

While the exposition of the vacancy generation
e�ects in this article was limited to only three

examples of speci®c physical situations, further pro-
cesses where similar e�ects may occur can be envi-

saged. A particular case is static recovery. Vacancy
generation by jogs on moving dislocations as well
as due to reduction of the total excess free volume

associated with dislocations upon a decrease in
their density may have an inhibiting e�ect on the
recovery process itself. A detailed treatment of this

case will be presented in a forthcoming paper [22].
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