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AbstractÐCurrent theories of grain growth presume that grain boundary migration is the rate-limiting
step, and either explicitly or implicitly assume that triple junctions can always move with su�cient speed to
accommodate the changing positions of the grain boundaries. Following from some recent observations of
triple-junction drag e�ects in tricrystals of zinc and in molecular dynamics models, an analytical theory is
developed to explore the e�ects of triple-junction drag upon grain growth, for a two-dimensional solid.
The theory is developed in the framework of the Von Neumann±Mullins formulation, and demonstrates
that drag e�ects operating exclusively at the triple junctions result in a retardation of grain growth. The
stability of six-sided grains in the isotropic, drag-free case of the Von Neumann±Mullins analysis is succes-
sively extended to grains of 6�N sides, where N increases with the strength of the triple-junction
drag. # 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The fact that a line (or column) of intersection of

three boundaries constitutes a system with speci®c

thermodynamic properties was realized more than a

hundred years ago [1]. However, the kinetic proper-

ties of this subject, in particular the mobility of tri-

ple junctions, were ignored up to now. Although

the number of triple junctions in polycrystals is

comparable in magnitude with the number of

boundaries, all peculiarities in the behavior of poly-

crystals during grain growth were solely attributed

to the motion of grain boundaries so far. It was

tacitly assumed in theoretical approaches, computer

simulations and interpretation of experimental

results, that triple junctions do not disturb grain

boundary motion and that their role in grain

growth is reduced to preserve the thermodynami-

cally prescribed equilibrium angles at the lines (or

the points for two-dimensional systems) where

boundaries meet. Inspired by experimental results

on bicrystals, advanced vertex models have recently

incorporated triple-junction mobility as an ad-

ditional kinetic parameter and thus were successful

in reproducing experimental results of triple junc-

tion and grain boundary motion in two-dimensional

systems [2]. The most prominent example of how

this assumption determines the fundamental con-
cepts of grain structure evolution gives the Von
Neumann±Mullins relation [3, 4]. No doubt this re-
lation forms the basis for practically all theoretical

and experimental investigations as well as computer
simulations of microstructure evolution in two-
dimensional polycrystals in the course of grain

growth [5±7]. This relation is based on three essen-
tial assumptions, namely: (i) all grain boundaries
possess equal mobilities and surface tensions, irre-

spective of their misorientation and crystallographic
orientation of the boundaries; (ii) the mobility of a
grain boundary is independent of its velocity; (iii)
the third assumption relates directly to the triple

junctions, namely, they do not a�ect grain bound-
ary motion; therefore, the contact angles at triple
junctions are in equilibrium and, due to the ®rst

assumption, are equal to 1208.

2. EFFECT OF TRIPLE JUNCTIONS

Let us consider a two-dimensional grain with an

area S (Fig. 1), using the assumptions given above.
The rate of change of the grain area during grain
growth, where the driving force of grain boundary

migration is the free energy of grain boundaries,
can be written as [3]
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dS

dt
� Ab

�
dj: �1�

If the grain were bordered by a smooth line, the
integral in equation (1) would equal 2p. However,
owing to the discontinuous angular change at every

triple junction, the angular interval Dj � p=3 is
subtracted from the total value 2p for each triple
junction. Consequently

dS

dt
� ÿAb

�
2pÿ np

3

�
� Abp

3
�nÿ 6� �2�

where n is the number of triple junctions for each
respective grain, i.e. the topological class of the

grain. Thus, the rate of area change is independent
of the shape of the boundaries and determined by
the topological class n only. Grains with n > 6 will
grow and those with n < 6 will disappear [4].

The existence of triple junctions drastically a�ects
the kinetics of grain growth. To discuss this pro-
blem quantitatively the mobility of a triple junction

should be measured. However, the steady-state
motion of a grain boundary system with a triple
junction when the curved boundary holds its shape

during motion, and the entire system moves with
the same velocity V, is only possible in a very
narrow class of geometrical con®gurations. Two of
these special boundary systems were investigated in

Refs [8±10] under three main assumptions. Two of
them comply with assumptions (1) and (2) of the
Von Neumann±Mullins consideration, while the

third one is determined by equation (2): the normal
grain boundary displacement rate v is proportional
to the grain boundary curvature K.

As shown in Ref. [8], the model grain boundary
system (Fig. 2) can move steadily and the analysis
of its motion permits us to understand the in¯uence

of the ®nite mobility of a triple junction on the mi-
gration of grain boundaries. As it was shown in
Ref. [9] the problem for a shape and velocity V of
moving grain boundary with a triple junction (con-

®guration in Fig. 2) can be strictly solved analyti-

cally.
The solution for the shape of a moving boundary

can be expressed as

y�x� � x arccos�eÿx=x�c1 � � c2

x � a=2Y

c1 � ln�sin Y�

c2 � ÿx�p=2ÿY�: �3�

The velocity V of steady-state motion of the system
is

V � 2Ymbs
a

: �4�

A driving force s�2 cos Yÿ 1� acts on the triple

junction from the curved boundaries. Introducing
the mobility of the triple junction mTj, its velocity
reads

VTj � mTjs�2 cos Yÿ 1�: �5�

Due to the fact that the driving force acting on the

grain boundary is a pressure and the driving force
on the triple junction is a force, the dimensions of
grain boundary and triple-junction mobility are
di�erent, so that their ratio mb/mTj has the dimen-

sion of a length.
The steady-state value for the angle Y can be

found from the equation

2Y
2 cos Yÿ 1

� mTja

mb

� L: �6�

If a triple junction is mobile and does not drag
grain boundary motion, the criterion L41 and

Y4p=3, i.e. the equilibrium angular value at a tri-
ple junction in the uniform grain boundary model.
In contrast, however, when the mobility of the tri-

ple junction is relatively low (strictly speaking,
when mTjaWmb� then Y40 (Fig. 3). It should be
stressed that the angle Y is strictly de®ned by the
dimensionsless criterion L, which, in turn, is a func-

Fig. 1. De®nition of parameters for a calculation of the
rate of grain area change.

Fig. 2. Con®guration of grain boundaries at a triple junc-
tion during steady-state motion for n < 6:
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tion of not only the ratio of triple junction and
grain boundary mobility, but of the grain size as

well.
Experimental investigations [9] were based on the

considered grain boundary system (Fig. 2). It was
shown that triple junctions do possess a ®nite mobi-

lity. The experimentally observed shape of a moving
grain boundary ®ts the theoretically calculated
[equation (3)] one quite well; the velocities V

[equations (4) and (5)] and the angles Y (Fig. 2)
were found to be constant for a given temperature
over the investigated temperature range, that jus-

ti®es the assumption of a steady-state motion of the
entire grain boundary system. It was found that the
vertex angle Y at the triple junction can deviate dis-

tinctly from the equilibrium value, when a low
mobility of the triple junction hinders the motion of
the grain boundaries. In fact, a transition from tri-
ple junction kinetics to grain boundary kinetics was

observed (Figs 4 and 5).

3. THE NATURE OF TRIPLE-JUNCTION DRAG

As mentioned, the triple junction may have a line
energy, just like a dislocation [1, 11]. At least for

the case of triple junctions between periodically

structured grain boundaries, the junction structure
is a periodic junction of its position. If the bound-
aries are coincidence-related, then the triple-junction

structure varies with the same period as that of the
largest coincidence-site lattice (CSL) among the
three boundaries. This structure variation produces
an energy variation with position, and a resulting

force (per unit length) that acts upon the triple
junction

F � rW �7�

where W is the energy per unit length of the triple-

junction line. Since the energy of the triple junction
varies periodically with position, so does this self-
force acting upon it: the energy and the force are

exactly analogous to the Peierls energy and the
Peierls force for a lattice dislocation.
When no external force is applied to the triple

junction, we presume that it seeks its local mini-

mum-energy position and the force acting upon it
goes to zero. Under these conditions, the forces
applied by the grain boundaries must sum to zero

and, in the isotropic approximation, the dihedral
angles are given by the usual sine±law relationship,
which can be expressed as a vector diagram as

shown in Fig. 6(a). As the junction starts to
respond to tractions applied by the grain bound-
aries, however, the self-force increases and must
resist the motion. Only when the externally applied

force exceeds the maximal value of the self-force
will the triple junction move over its energy maxi-
mum in the direction of motion. The driving force

available to move the triple junction is exactly the
di�erence between the applied force and the resist-
ance force (or ``drag force''), which is seen to be the

maximal value of F, designated as Fdrag. The forces
acting on the triple junction at the point where
motion commences are then as shown in Fig. 6(b).

We see that the drag force acts to change the dihe-
dral angles, which must reach a critical value before
the triple junction will start to move. In fact, we
can use the change in dihedral angle between the

Fig. 3. Angle Y as a function of L: (a) for n < 6, equation
(6); (b) for n > 6, equation (12).

Fig. 4. Temperature dependence of the criterion L for a
symmetrical triple junction [9].

Fig. 5. Temperature dependence of the criterion L for an
ideal triple junction [9].
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static and dynamic structures, to get a direct
measure of the drag force magnitude.
This consideration of the physical origin of the

drag force indicates the same general behavior as
that deduced in Ref. [10]. We conclude that triple-
junction motion is akin to Bingham ¯ow: linearly

dependent upon driving force, after a threshold
force (or dihedral angle) is exceeded, as shown sche-
matically in Fig. 7.

Periodic drag forces result intrinsically from the
structures of triple junctions in homogeneous, pure
materials. Non-periodic drag forces can be caused
by local structural features such as precipitates, sur-

face pits or solute atmospheres. In these cases, ad-
ditional drag forces may apply, and these act in the
same way as the breakaway force that applies to

grain boundary migration under the in¯uence of
solute drag [12±15]. The triple junction will appear
to have two di�erent mobilities, above and below

this threshold driving force.

4. THE EFFECT OF TRIPLE-JUNCTION DRAG ON
VON NEUMANN±MULLINS RELATION

4.1. Phenomenological approach

Let us consider how the mentioned results in¯u-

ence the Von Neumann±Mullins relation (6). For
this we assume that the in¯uence of the triple junc-
tion is rather large, but, nevertheless, the motion of

the system can be viewed as grain boundary
motion, since the driving force is still due to the
grain boundary curvature, i.e. the role of the triple

junction is reduced to a change of the angle Y{. As
can be seen from Fig. 2, the model con®guration
correlates to grains in a polycrystal with less than

six neighbors (adjacent grains), in other words, the
topological class of the grain is smaller than six.
For grains with topological class greater than six

let us consider the steady-state motion of a grain
boundary system shown in Fig. 8 with the same set
of assumptions applied to the previous boundary

system, namely, uniform grain boundary properties
and quasi-two-dimensionality [10]. The steady-state
motion of this system is determined by

y�x� � ÿ x 0

ln sin Y
arccos�e�x=x 0�ln sin Y �: �8�

The velocity of the triple-junction motion can be
expressed as

VTj � mTjs�1ÿ 2 cos Y�: �9�

The velocity of steady-state motion of the system is

V � ÿmbs
x 0

ln sin Y: �10�

The length x0 replaces the role of the grain size a in
the previous case (Fig. 8) or

y0 � y�x 0� � ÿ x 0

ln sin Y
arccos�eln sin Y �

� ÿ x 0

ln sin Y
�p=2ÿY�: �11�

From equations (9) and (10) we obtain L, which

Fig. 6. The forces acting upon a triple junction: (a) equilibrated, at rest; (b) as the dihedral angle
changes. F increases in response to the changing dihedral angle until it reaches its maximal value, Fdrag.

Fig. 7. Schematic illustration of the e�ect of the drag force
on the motion of a triple junction.

{ As mentioned above equation (6) describes the steady-

state value of the angle Y. Of course, triple junctions in

real polycrystals rarely experience steady-state motion.

However, the attainment of a true steady state is not im-

portant in this context. Even if the angle Y is not in

steady state with the moving triple junction, it will be

di�erent from the equilibrium Y angle p/3 as assumed for

the Von Neumann±Mullins relation and thus, a�ect the

kinetics with the same tendency as in steady state.
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describes the in¯uence of the triple-junction mobi-
lity on grain boundary migration

ÿ ln sin Y
1ÿ 2 cos Y

� mTjx 0

mb

� L: �12�

Obviously, for Lw1, when the boundary mobility

determines the kinetics of the system the angle Y
tends to its equilibrium value (p/3).
Again, the angle Y changes when a low mobility

of the triple junction starts to drag the motion of
the boundary system. However, as can be seen from
equation (12) and Fig. 3, in this case the steady-
state value of the angle Y increases as compared

with the equilibrium state. (Otherwise the triple
junction would move in the negative direction of
the x-axis, increasing the free energy of the system.)

For LW1 the angle Y [equation (12)] tends to
approach p/2. The dependency Y � Y�L� for both
n < 6 and n > 6 are shown in Fig. 3.

The rate of area change for a grain with n < 6
can be expressed as

dS

dt
� ÿmbs

�
dj � ÿAb�2pÿ n�pÿ 2Y��

� Ab�nÿ 2Y�
�
nÿ 2p

pÿ 2Y

�
: �13�

Since the limited mobility of the triple junction
reduces the steady-state value of the angle Y as
compared with the equilibrium angle, the shrinking

rate of grains with n < 6 decreases, as is obvious
for the case when the mobility of the triple junction
becomes very low. In other words, for grains with
n < 6 the in¯uence of the triple-junction mobility

slows down the process of grain structure evolution,
decreasing the vanishing rate of grains with small
topological class �n < 6).

For grains with topological class greater than six
let us refer to the considered steady-state motion of
a grain boundary system with a large number of tri-

ple junctions (Fig. 8) [10]. The dimensionless par-
ameter L, which describes the in¯uence of the
triple-junction mobility on grain boundary mi-

gration for such a system is given by equation (12).
When a low mobility of the triple junction starts to
drag the motion of the boundary system, the angle
Y changes. However, in this case, the steady-state

value of the angle Y increases as compared with the
equilibrium state. Such an increase of the angle Y
also decreases the magnitude of �pÿ 2Y� in
equation (13), in other words, it decreases the

``e�ective'' magnitude of the topological class of the
growing grain with n > 6: Consequently, micro-
structural evolution will slow down due to triple-

junction drag for any n-sided grain.
The only exception holds for n � 6, since a hexa-

gonal grain structure becomes unstable when the

contact angle 2Y 6� 2p=3: Since the actual magni-
tude of Y is determined by the triple junction and
grain boundary mobility as well as the grain size
and is independent of the number of sides of a

grain, there is no unique dividing line between van-
ishing and growing grains with respect to their
topological class anymore, like n � 6 in the Von

Neumann±Mullins approach.

4.2. Geometrical approach

Let us rationalize the Von Neumann±Mullins
growth law [2, 3] simply, as follows: grain growth
derives from curvature-driven grain boundary mi-

gration, and the grain boundary curvature derives
from the preservation of particular dihedral angles
at the triple junctions. With uniform, isotropic

grain boundary energy the dihedral angles are all
2p/3. Thus in two dimensions, grains with more
than six sides have convexly curved grain bound-

aries, grains with less than six sides are concave,
and six-sided grains have ¯at boundaries. This
results in the growth of large grains and the shrink-
age of small ones that we recognize as conventional

grain growth.
Let us now consider the shrinkage of small grains

(having less than six sides) in a polycrystalline

matrix. In the two-dimensional case, with uniform
grain boundary energy and mobility, and with grain
boundary migration driven only by curvature, the

rate of area loss of a grain is constant, provided
that the grain maintains a constant shape. We can
therefore study the e�ects of varying dihedral angles

independently of other variables. We present the
analysis for grains of two, three, four and ®ve sides
(Fig. 9).
When triple-junction drag a�ects the process, as

Fig. 8. Con®guration of grain boundaries at triple junctions during steady-state motion for n > 6 [10].
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discussed above, the angles ai are reduced by an
amount related to the drag force. We denote this
angle as b, and it is half of the reduction in the

dihedral angle. Thus, under the in¯uence of triple-
junction drag, we have a2 � 608ÿ b; a3 � 308ÿ b;
a4 � 158ÿ b; a5 � 68ÿ b: Larger drag forces pro-
duce larger values of b. We can now compute the

e�ect of increasing triple-junction drag upon the
rate of shrinkage of these various types of small
grains. Without performing any computations at

all, however, it is quite easy to see what the e�ect
of increasing the drag term will be. In the case of a
®ve-sided grain, a5 � 68ÿ b, so we can readily see

that a b-value of 68 results in a shrinkage rate of
zero. The reason for this is simple: once this value
is reached, the grain has ¯at sides that no longer

migrate inward. E�ectively, then, this ®ve-sided
grain with draggy triple junctions acts like a six-
sided grain in the classical Von Neumann±Mullins
analysis.

The relative rates of shrinkage for the di�erent
grains are shown in Fig. 10, as a function of b. It is
clear that increasing drag force reduces the shrink-

age rates of all of these grains. As the drag force
increases, ®rst ®ve-sided grains become stable, then
four-sided ones, etc. Two-sided grains can never be
stabilized, no matter how large the triple-junction

drag force, since that requires a b-value of 608,
which makes the dihedral angle go to zero, remov-
ing the grain before triple-junction motion occurs.

5. CONCLUSIONS

The e�ect of triple-junction mobility on the rate
of change of the grain area during grain growth

was investigated. It was found that a ®nite junction
mobility exerts a drag on the adjoining grain
boundaries. This is re¯ected by a deviation of the

grain vertex angles at triple junctions from their
equilibrium value 2p/3 and correspondingly, by a
modi®cation of the Von Neumann±Mullins re-
lation. It was shown that for the situation when the

triple junction in¯uence on grain boundary motion
is large enough, but nevertheless the grain boundary
motion is controlled by grain boundary kinetics, the

triple junction in¯uence results in a reduced rate of
microstructure evolution during grain growth. The
results of the geometrical approach correlate well

with conclusions of phenomenological consider-
ations. One of the main consequences of the phe-
nomenological consideration relates to the stability

of a hexagonal grain structure under the conditions
when the low mobility of the triple junctions drags
the grain boundary motion. Since the actual magni-
tude of the angle at a tip of a triple junction is

determined by the triple junction and grain bound-
ary mobility as well as the grain size and does not
depend on the number of sides of a grain, there is

no unique border line between vanishing and grow-
ing grains with respect to their topological class
anymore, like n � 6 in the Von Neumann±Mullins

approach.

Fig. 9. The geometry of two-, three-, four- and ®ve-sided grains, as used in the analysis presented in the
text. The grain boundaries are cylindrical surfaces, with radius R.

Fig. 10. The area rate of shrinkage (in units of Ab) for
two-, three-, four- and ®ve-sided grains, as a function of
the critical inclination angle shift, b. b increases with the
triple-junction drag force, and it can be seen that increas-
ing the drag force retards the shrinkage of these small
grains. The growth of large grains is similarly a�ected,
and the process of grain growth is generally retarded by

triple-junction drag.
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APPENDIX

A one-sided grain is circular, with radius R, and
with no triple junctions. The curvature is 1/R and
the area is R

2
. Writing the velocity of the grain

boundary as

V � Ab
1

R
�A1�

we deduce that

dR

dt
� Ab

1

R
: �A2�

Since

dS

dR
� 2pR �A3�

dS

dt
� ÿ2pAb: �A4�

Thus the rate at which cross-sectional area is lost

from the shrinking grain to the surrounding grain is
a constant, and simply related to the grain bound-
ary mobility.

A two-sided grain is illustrated in Fig. 3. The
area of the grain is

S2 � 2R2�a2 ÿ sin a2 cos a2�: �A5�

If the grain shrinks self-similarly

dR

dt
� Ab

1

R�1ÿ cos a2� : �A6�

Then

dS2

dt
� ÿ4Ab

�a2 ÿ sin a2 cos a2�
�1ÿ cos a2� : �A7�

For a three-sided grain, we obtain by a similar pro-

cess

dS3

dt
� ÿ6Ab

ÿ
a3 ÿ sin a3 cos a3 � sin2 a3=

���
3
p ��

1� sin a3
2
ÿ cos a3

� : �A8�

For a four-sided grain

dS4

dt
� ÿ8Ab

�a4 ÿ sin a4 cos a4 � sin2 a4�
�1� sin a4 ÿ cos a4� : �A9�

The result for a ®ve-sided grain is

dS5

dt
� ÿ10Ab

�a5 ÿ sin a5 cos a5 � 1:3764 sin2 a5�
�1� 1:3764 sin a5 ÿ cos a5� :

�A10�
In each of these cases, the angle ai is the internal
angle of the circular arc that de®nes the grain
boundary position. If the dihedral angles are all 2p/
3, then the respective values of ai are a2 � 608;
a3 � 308; a4 � 158; a5 � 68:
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