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Introduction

It is well established that the driving force for grain growth is the grain boundary interfacial free energy.
As grain growth takes place the total grain boundary interfacial free energy decreases with time,t:

dG

dt
5

d~gS!

dt
, 0 (1)

whereG, S and g are the Gibbs free energy, the total grain boundary interface area and the grain
boundary free energy per unit of grain boundary area.

The grain boundary migration rate during grain growth is proportional to the pressure difference
across the grain boundaries,Dp, or equivalently to the grain boundary curvature (1,2):

n 5 MDp 5 2Mgk (2)

wherev is the grain boundary migration rate or the grain boundary velocity,M is the grain boundary
mobility andk is the grain boundary curvature. The minus sign is necessary for grain growth since the
grain boundary moves towards its center of curvature.

Computer simulation of grain growth has significantly developed in the last decade (3–14).
Computer simulations normally belong to one of two distinct groups. In the first group there are the
computer simulations that use Eq. 2 at each point of the grain boundary as a “rule” for the grain
boundary migration. An example would be the “front tracking models”(5). In the second group there
are models which assume a different rule for grain boundary migration, for example, Monte Carlo Potts
models (3,4). These models often use Eq. 1 to establish the direction of migration. The expression
“curvature driven models” is often used when referring to the first group. It is clearly relevant to
understand to what extent such models are equivalent and this is connected to a more precise
understanding of the relationship between Eqs. 1 and 2.

In addition to Eqs. 1 and 2 another characteristic has been found to be important for grain growth:
scaling. After a transient period, grain growth evolution reaches the quasi-stationary state in which both
grain size and grain shape distribution remain invariant when suitably scaled. The parabolic rate law,
dR2/dt 5 constant, whereR is the mean grain radius is characteristic of this state. The quasi-stationary
state was predicted in the early analytical theories (15–17) of grain growth and has been extensively
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confirmed by computer simulation results (3–14). Computer simulations invariably finddR2/dt 5
constant and the “quasi-stationary” grain size/shape distributions are similar even when different
computer simulation methods are used (10–13). The grain size distribution obtained from computer
simulation (18–20) can be described by a grain size distribution obtained by an analytical model(18).
However the analytical model is unable to predict the value ofdR2/dt that has to be found from the
computer simulation data.

In spite of the large amount of research on normal grain growth the relationship among Eqs. 1, 2 and
the quasi-stationary state is not yet fully understood. In this work the formalism of the Thermodynamic
Theory of Irreversible Processes (21) is applied to normal grain growth in order to clarify this point.

Irreversible Thermodynamics

The irreversible entropy production,s, can be written as (21):

s 5 2
1

T

dG

dt
(3)

From a general point of view (22) one can say that the grain boundary velocity,v, is proportional
to a driving forceP:

n 5 MP (4)

This driving force has the dimensions of energy per unit of volume which is conceptually equivalent
to a pressure, a force acting per unit of area on a grain boundary. As a certain grain boundary areaS
moves with velocityv the rate of free energy change is given by:

2
dG

dt
5 SnP 5 SMP2 (5)

whereM is the grain boundary mobility.
Eqs. 4 and 5 suggest that for grain boundary migration it is convenient to use the rate of production

of irreversible entropy per unit of area of interface(23),sS, given by

ss 5 2
1

TS

dG

dt
(6)

whereS is the total grain boundary area. The rate of the irreversible entropy production can be written
as a product of generalized forces and the corresponding rates or generalized “fluxes” of the irreversible
processes. In the present case it is enough to consider one rate or generalized flux,J, and one force,X
(21):

Tss 5 2
1

S

dG

dt
5 JX (7)

where the flux is assumed to be linearly related to the force by a linear phenomenological law (21):

J 5 LX (8)

whereL is a phenomenological coefficient assumed to be constant.
From Eqs. 7,8 an useful expression can be found

GRAIN GROWTH OF IRREVERSIBLE PROCESSES894 Vol. 44, No. 6



2
1

S

dG

dt
5

J2

L
5 LX2 (9)

From Eqs. 4,5 and 8,9 one can readily identifyL 5 M, X 5 P and consequentlyJ 5 v. In the present
work only grain growth and its associated driving force for grain boundary motion are considered but
the above treatment can be applied to grain boundary migration in general.

Total Grain Boundary Area vs. Grain Boundary Curvature

The irreversible entropy production can be written as a function of grain boundary area per unit of
volume,S, by using Eqs. 1 and 6 and from the constraint that the total volume remains constant:

Tss 5 2
g

S

dS

dt
5 2

g

SV

dSV

dt
(10)

For normal grain growth the average grain boundary velocity^n& is a suitable choice for the reaction
rate or generalized “flux.” Using Eqs. 9,10:

^n&2 5 2
Lg

SV

dSV

dt
(11)

Eq. 11 relates a “local” property, the grain boundary velocity, to a “global” property the grain
boundary area per unit of volume. Eq. 11 does not depend on any stereological assumptions and is valid
for non-steady state grain growth.

In order to find an expression for^n& one can use (24,25):

^n& 5
1

S

dVS

dt
(12)

Eq. 10 was derived for the growth of a second phase and in that casedVS represented the increase
in the volume of the second phase. In the present casedVS represents the volume swept by the moving
grain boundary. An approximate expression for the volume swept(26) can be found consideringN equal
grains of mean grain volumeum. In such an idealized situationN-dN grains grow bydum whereasdN
grains of volumeum disappear so that the total volume,VT 5 Num 5 (N-dN)(um1dum), remains
constant. Clearly the volume swept due to the displacement of the boundaries isdVS 5 (N-dN)dum 5
Ndum so that using Eqs.11,12 one can write:

^n& 5
1

SV

d ln um

dt
5 2

1

SV

d ln NV

dt
(13)

whereNV 5 1/um is the number of grains per unit of volume. As a consequence:

Sd ln NV

dt D 2

5 2
Lg

2

dSV
2

dt
(14)

Eq. 14 is valid for non-steady state grain growth. Although the final results are different, the concept
of the volume swept was introduced by Rhines, Craig and DeHoff (27) and later used by Doherty (28)
and Vandermeer (29).

The grain boundary area per unit of volume,SV, and the mean grain volume,um, can be expressed
as a function of the mean grain radius,R, using appropriate shape factors,kSV andkV:
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SV 5
kSV

R
(15)

um 5 kVR
3 (16)

During non-steady state grain growthkSV andkV depend on the grain size/shape distribution, which
can change with time. For quasi-stationary normal grain growth treated herekSV andkV are constant.
Inserting Eqs. 15 and 16 into Eq. 14 one obtains the parabolic law characteristic of the quasi-stationary
state:

dR2

dt
5

2

9
kSV

2 Lg (17)

In Eqs. 11,13̂ n& was directly related to the decrease in the total grain boundary area per unit of
volume. Alternatively, one could relate^n& to the average driving force that acts on the grain boundaries.
By taking the average on both sides of Eq. 2 one can write:

^n& 5 M^Dp& 5 2Mg^k& (18)

The work done by,Dp. as the grain boundaries sweepdVS, dW, must be equal to the decrease in
the total interfacial free energy:

dW 5 ^Dp&dVS 5 2dG 5 2gdS (19)

as a consequence:

^Dp& 5 2g^k& 5 2g
dS

dVS
(20)

It is trivial to see that the choices:J 5 ,v. andX 5 ,Dp. 5 2g,k. are fully consistent:

TsS 5 2
g

S

dS

dt
5 2^n&^gk& 5 2

g

S

dVS

dt

dS

dVS
(21)

Therefore,v. can be either directly related to the decrease in the total grain boundary area or to
the average driving force that acts on the grain boundaries. It can be easily checked that the final results
are the same in both cases withL equal toM.

Minimum Entropy Production and the Quasi-Stationary State

Inserting Eq. 15 into Eq. 10 one obtains:

TsS~R, kSV! 5
1

R

dR

dt
2

1

kSV

dkSV

dt
(22)

Eq. 22 shows that the entropy production can be expressed as a function of two variables:R that
corresponds to a length scale of the system andkSVthat is a function of the grain size/shape distribution.
The first term is always positive and continuously decreases with time asR increases. It has no
minimum but goes to zero asR3` that corresponds to the equilibrium condition. ThedkSV/dt term on
Eq. 22 vanishes when the system reaches the quasi-stationary state in whichkSV remains constant.

According to Prigogine’s Principle of Minimum Entropy Production(21) the entropy production is
a minimum at the steady-state. So strictly speaking this principle is not valid for the quasi-stationary
state. The quasi-stationary state is not a steady-state in the thermodynamical sense since the entropy
production is not constant.
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From Eqs. 17,22, supposing thatkSVremains constant an expression for the entropy production in the
quasi-stationary state, can be written as:

TsS~R, kSV5 constant! 5
MgkSV

2

9R2 (23)

Summary

In summary, the irreversible thermodynamics treatment, although possibly somewhat more general
as the driving force need not be specified, gives a result identical to that obtained from the usual
relationship of grain boundary velocity and curvature provided that the generalized flux and force are
consistently defined.
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