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Triple junction drag and grain growth in 2D polycrystals
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Abstract

The process of grain growth in 2D systems is analyzed with respect to the controlling kinetics: from solely boundary
kinetics, when grain growth in a polycrystal is determined by the Von Neumann–Mullins relation, to exclusively triple
junction kinetics, when grain growth is governed by the mobility of triple junctions. It is shown that in the “intermediate”
case, when the driving force for grain boundary motion and the characteristic mobility are grain boundary curvature
and grain boundary mobility, respectively, a limited mobility of triple junctions essentially influences grain boundary
motion. The Von Neumann–Mullins relation does not hold anymore, and this is the more pronounced the smaller the
triple junction mobility. In the case where grain growth is determined by the mobility of grain boundary triple junctions
(triple junction kinetics) all grains are transformed into polygons in the course of grain growth. Grain growth would
cease if all grains assumed the shape of regular polygons, not only hexagons like in the Von Neumann–Mullins case.
The only exceptions are triangles: they collapse without transforming into a polygon. The respective relation for the
rate of a change of grain area under triple junction kinetics is obtained and discussed with regard to microstructure
evolution.  2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Von Neumann–Mullins relation [1,2] con-
stitutes a basis for practically all theoretical and
experimental investigations as well as computer
simulations of microstructural evolution in 2D
polycrystals in the course of grain growth [3–5].
One of the principal features underlying this
relation is the assumption that the triple junctions
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do not drag grain boundary motion. However, sev-
eral recent theoretical and experimental studies
provide evidence that the kinetics of triple junc-
tions may be different from the kinetics of the
adjoining grain boundaries [6–11]. This affects the
kinetics of microstructure evolution during grain
growth. In the present work we will consider firstly
grain boundary motion, or, more correctly, the
change of area of a specific 2D grain under the
condition that despite a strong influence of triple
junctions, the evolution of the system is controlled
by grain boundary motion. In the second part the
microstructural evolution of 2D polycrystals will
be considered under the condition that the motion
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of a grain boundary system with triple junctions is
controlled by triple junction kinetics. The consider-
ation in both the first and the second part will be
conducted under the assumptions [6,9,11] that the
system migrates under the action of the surface ten-
sion of uniform grain boundaries only, in other
words, the average grain growth process is con-
sidered. In the second part of the paper we will
consider microstructure evolution of 2D polycrys-
tals during grain growth under triple junction kin-
etics, and we will show that for the kinetics not
only grain boundary mobility mb and triple junction
mobility mtj but also the grain size plays a role.

2. The Von Neumann–Mullins relation

For grain growth in a 2D system, Mullins [2]
derived a fundamental relation, which was orig-
inally formulated by Von Neumann for 2D soap
froth [1]. The respective model makes very funda-
mental assumptions, namely: (1) all grain bound-
aries possess equal mobilities and surface tensions,
irrespective of their misorientation and the crystal-
lographic orientations of the boundaries; (2) the
mobility of a grain boundary is independent of its
velocity; (3) the triple junctions do not affect grain
boundary motion; therefore, the contact angles at
triple junctions are always in equilibrium and, due
to the first assumption, are equal to 120°.

Let us consider a 2D grain with an area S [12].
In the time interval dt all points on the grain
boundaries of the considered grain will displace
normal to the grain boundaries by the amount V
dt, where V is the grain boundary migration rate.
Accordingly, the rate of change of the grain area
S can be expressed by

dS
dt

� ��V dl (1)

where dl is an element of the grain perimeter. For
grain growth

V � smbK � AbK (2)

where mb is the grain boundary mobility, s is the
grain boundary surface tension. K is the local cur-
vature of the grain boundary

K �
dj
dl

(3)

where j is the tangential angle at any given point
of the grain boundary.

From equations (1)–(3) follows

dS
dt

� �Ab� dj (4)

If the grain were bordered by a smooth line, the
integral in Eq. (4) would equal 2p. However,
owing to the discontinuous angular change at every
triple junction, the angular interval �j=p/3 is sub-
tracted from the total value 2π for each triple junc-
tion. Consequently

dS
dt

� �Ab�2p�
np
3 � �

Abp
3

(n�6) (5)

where n is the number of triple junctions for each
respective grain, i.e. the topological class of the
grain. Thus, the rate of area change is independent
of the shape of the boundaries and determined by
the topological class n only. Grains with n�6 will
grow and those with n�6 will disappear [2].

3. Grain boundary motion dragged by triple
junctions

3.1. Vertex angle for n�6

Evidently, the existence of triple junctions mark-
edly affects the kinetics of grain growth. However,
we will show below that the interaction of moving
grain boundaries with triple junctions also drasti-
cally affects our conception of microstructure evol-
ution. A comprehensive treatment for grain bound-
ary motion controlled grain growth affected by
triple junction drag has been given in [6–9]. For a
comparison with grain growth controlled by triple
junction motion, the major results will be reiterated
below.Fig. 1

An analysis of the steady state motion of model
grain boundary systems helps us to understand the
influence of the mobility of a triple junction on the
migration of grain boundaries in polycrystals. In
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Fig. 1. Definition of parameters for the effect of triple junc-
tions for a calculation of the rate of grain area change.

the following we consider a system of three grain
boundaries with a common triple junction as
depicted in Fig. 2. Two of the boundaries are
curved, which results in a force on the entire
boundary-junction-system. The convex shape of
the boundaries corresponds to the curvature of the
grains with less than six sides in a polycrystal.
Hence, this geometry is representative for grain
with n�6, where n is the number of sides of a
grain in 2D.

During steady state motion of the whole system
the velocity V parallel to the x-axis (Eq. (2)) is
related to the normal displacement rate v

v � V cos j � V
y�

(1 � (y�)2)1/2 (6)

Fig. 2. Configuration of grain boundaries at a triple junction
during steady state motion for n=6.

where y(x) is the shape of the upper part of the
curved boundary [6]. (Due to the mirror symmetry
of the problem relative to the x-axis, the shape of
the lower boundary is the negative equivalent).

From Eqs (2), (6) and taking into account the
expression for the curvature K

K � �
y�

(1 � (y�)2)3/2 (7)

we obtain the equation for the shape of the moving
grain boundary

y� � �
v

mbs
y�(1 � (y�)2) (8)

With the boundary conditions y(0)=0, y(	)=a/2,
y�(0)=tan 
, Eq. (8) has the solution

y(x) � x arccos(e�x/x+c1) � c2 (9)

where x � a /2
, c1 � ln(sin 
), c2 � �x(p /2�

).

The meaning of the length a and the angle 
 is
clear from Fig. 2. A driving force s(2 cos 
�1)
acts on the triple junction from the curved bound-
aries. Introducing the mobility of the triple junction
mtj, its velocity reads

Vtj � mtjs(2 cos 
�1) (10)

Due to the fact that the driving force acting on
the grain boundary is a 2D pressure (force/length)
and the driving force on the triple junction is a
force, the dimensions of grain boundary and triple
junction mobility are different, so that their ratio
mb/mtj has the dimension of a length.

The velocity V of steady state motion of the sys-
tem is

V �
2
mbs

a
(11)

and the steady state value for the angle 
 can be
found from the equation

2


2 cos 
�1
�

mtja
mb

� � (12)

If a triple junction is perfectly mobile and does
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not drag grain boundary motion, then �→	 and

→p/3, i.e. the equilibrium angle at a triple junc-
tion in the uniform grain boundary model. In con-
trast, however, if the mobility of the triple junction
is relatively low (strictly speaking, if mtja�mb then

→0 (Fig. 3 [6]). It is particularly emphasized that
the angle 
 is completely defined by the dimen-
sionless parameter �, which, in turn, is a function
of not only the ratio of triple junction and grain
boundary mobility, but of the grain size as well.
Thus, the term “ triple junction of low mobility” is
equivalent to a “small value of �” .

Experimental investigations carried out with the
shape of the grain boundary system shown in Fig.
2 revealed that triple junctions do possess a finite
mobility [7,8,11]. In particular, it was demon-
strated that the vertex angle 
 at the triple junction
can deviate distinctly from the equilibrium value,
when a low mobility of the triple junction hinders
the motion of the grain boundaries. In fact, a tran-
sition from triple junction kinetics to grain bound-
ary kinetics was observed (Fig. 3) [7].

3.2. Vertex angle for n�6

The model behavior of grains with topological
class n�6 can be considered by the steady state
motion of a grain boundary system shown in Fig.
4. Again, we assume uniform grain boundary
properties and quasi-two-dimensionality. The ste-
ady state motion of this system is determined by

Fig. 3. Measured temperature dependence of the criterion �
for Zn tricrystals.

Fig. 4. Configuration of grain boundaries at triple junctions
during steady state motion for n�6.

the set of Eqs. (2, 6–8) only with different bound-
ary and initial conditions: y�(0)=	, y�(x0)=tan 
,
y(0)=0 to yield

y(x) � �
x0

ln sin 

arccos(e(x/x0)ln sin
) (13)

The velocity of the triple junction can be
expressed as (Fig. 4)

Vtj � mtjs(1�2 cos 
) (14)

The velocity of steady state motion of the
boundary system is

V � �
mbs
x0

ln sin 
 (15)

The length x0 replaces the role of the grain size
a in the previous case (Fig. 4).

From Eq. (14) and Eq. (15) we obtain �, which
describes the influence of the triple junction
mobility on grain boundary migration

�
ln sin 


1�2 cos 

�

mtjx0

mb

� � (16)

Obviously, for ��1, when the boundary
mobility determines the kinetics of the system the
angle 
 tends to its equilibrium value (p/3).

Again, the angle 
 changes when a low mobility
of the triple junction starts to drag the motion of
the boundary system. However, as can be seen
from Eq. (16) and Fig. 3, in this case the steady
state value of the angle 
 increases as compared
to the equilibrium state.
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3.3. Effect on Von Neumann–Mullins relation

Let us consider how the Von Neumann–Mullins
relation Eq. (5) looks in the light of the men-
tioned results.

It was pointed out that the derivation of the Von
Neumann–Mullins relation is based on three
assumptions. One of them is the requirement
imposed on the triple junction, namely, the
mobility of triple junctions is infinitely large; there-
fore, the contact angles at triple junctions are in
equilibrium and for a system of uniform grain
boundaries the angles are 120°. The reported evi-
dence of a finite mobility of triple junctions and
the marked deviation of the vertex angle 
 from
the equilibrium value requires reconsideration of
the influence of triple junction drag on the Von
Neumann–Mullins relation.

For this we assume that the influence of the tri-
ple junctions is rather large, but nevertheless, the
motion of the system can be viewed as grain
boundary motion, since the driving force is still
due to grain boundary curvature, i.e. the role of the
triple junctions is reduced to a change of the angle

. As mentioned above Eq. (12) describes the ste-
ady state value of the angle 
. Of course, triple
junctions in real polycrystals rarely experience ste-
ady state motion. However, the attainment of a true
steady state is not important in this context. Even
if the angle 
 is not in steady state with the moving
triple junction, it will be different from the equilib-
rium angle 
=p/3 as assumed for the Von Neum-
ann–Mullins relation and thus, will affect the kin-
etics with the same tendency as in steady state.

Let us consider the motion of a boundary driven
by grain boundary curvature with a triple junction.
Due to the fact that triple junctions have their own
mobility the motion of such a boundary can be
considered as a motion of a boundary with mobile
defects [13]. The velocity of such a boundary is
given by

V � Peff·mb (17)

where Peff is the effective driving force.

Peff � sK�
f
a

(18)

Here a is the spacing of junctions, f is the drag-
ging force of a junction with the Einstein relation

f �
V
mtj

(19)

we arrive at

V�1 �
mb

mtja
� � mbsK (20)

From equations (12), (16), (17) and (20)

V �
mbsK

1 �
1
�

(21)

In our consideration the contact angle 
 is
assumed to be close to the equilibrium angle, so
the criterion � is large. That is why the rate of area
change can be expressed as

dS
dt

� �mbs�
dj

1 �
1
�

� �
Ab

1 �
1
�

�dj (22)

Because the integral �dj for n-sided grain under
the impact of a non-equilibrium contact angle is
equal to [9]

�dj � 2p�n(p�2q)

the Eq. (22) takes the form

dS
dt

� �
Ab

1 �
1
�

[2p�n(p�2q)] (23)

For grains with n�6 Eq. (23) reads

dS
dt

� �
Ab

1 �
2 cos q�1

2q

[2p�n(p�2q)] (24)

Since the limited mobility of triple junctions
reduces the steady state value of the angle 
 as
compared to the equilibrium angle, the shrinking
rate of grains with n�6 decreases. In other words,
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the influence of the triple junction decreases the
vanishing rate of grains with small topological
classes.

Correspondingly, for grains with n�6 with
equations (16) and (23) we arrive at

dS
dt

�
Ab[n(p�2q)�2p]

1�
1�2 cos q
ln(sin q)

(25)

In this case the dragging influence of triple junc-
tions increases the angle 
 and also slows down
the process of grain structure evolution. In other
words, microstructural evolution proceeds more
slowly due to triple junction drag for any n-sided
grain. Since the actual magnitude of 
 is determ-
ined by triple junction and grain boundary mobility
as well as the grain size there is no unique dividing
line between vanishing and growing grains with
respect to their topological class anymore.

4. Grain boundary motion controlled by triple
junction kinetics

4.1. Steady state grain boundary shape

In the following we consider the rate of change
of a grain area S when the motion of grain bound-
aries is controlled by the motion (mobility) of triple
junctions. This is different from the case where
boundary motion is only dragged by a small triple
junction mobility. To begin with we will show that
in the course of grain growth in 2D systems under
triple junction control the grains will eventually be
bordered by straight lines, i.e. they will assume a
polygonal shape.

Let us consider the curvature of a grain bound-
ary system with triple junctions (Figs 2 and 4). The
expression for the curvature K can be found from
equations (7), (9)–(12), (13). For the system shown
in Fig. 2 we obtain with x=a/2


K �
1
x
e�x/x+ln sin 
 �

2


a
e�(2
/a)x sin 
 (26)

�
�

a
sin 
(2 cos 
�1)e�(2
/a)x

while for the system shown in Fig. 4

K �
ln sin 


x0

e(x/x0) ln sin 
 �
�

x0

(1 (26a)

�2 cos 
)e(x/x0) ln sin 


In either case, the grain boundary curvature K
approaches zero, since for triple junction kinetics
�→0, i.e. the grain structure of 2D polycrystals
essentially comprises straight grain boundaries
which extend between the triple junctions. In other
words, the granular arrangement in a 2D polycrys-
tal is represented by a system of polygons. Owing
to the imbalance of surface tensions at each junc-
tion, the polygonal structure is liable to change
with time, i.e. to coarsen (Section 3.3). In this con-
text it is interesting whether the structure can
assume a stable arrangement that would freeze
grain growth. For boundary mobility controlled
grain growth like in the Von Neumann–Mullins
case (Eq. (5)), but equally in the instance of junc-
tion drag (Eq. (23)), grain growth would cease if
all grains assume a hexagonal shape (n=6, 
=60°)
even though this would not be the lowest free
energy state of the crystal.

The case of junction mobility controlled grain
growth requires a different topology for grain
growth stagnation, i.e., all grains would have to
assume the shape of a regular polygon, irrespective
of their number of sides, except for a triangle. As
shown in Appendix A, a grain with a shape of a
regular polygon remains stable, i.e., does not
undergo a shape change except for a triangular
shape. Correspondingly, a 2D arrangement of
grains with regular polygonal shape would
“ freeze” , except if it contains triangular grains. The
hexagonal structure belongs to this set of stable
geometries only, if it were equilateral. On the other
hand, any other space filling arrangement of reg-
ular polygon is a potential stable structure, if it can
be attained.1 The only exception is a triangle, and
any arrangement of regular polygons which con-

1 It is not known to the authors whether space filling topo-
logical arrangements of regular polygons exist besides regular
hexagons.
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tains at least a single triangle would also be
observed to behave unstably.

We reason that this phenomenon has important
consequences for the development of grain growth.
Let us take a look at the evolution of a shrinking
grain in the course of grain growth. The topologi-
cal class of such a grain should be smaller than 6,
naturally taking into account all corrections to the
Von Neumann–Mullins relation, given in Section
3. As shown above the transition between bound-
ary and triple junction kinetics does not only
depend on grain boundary and triple junction
mobility, but on the size of a grain as well. When
the size of a grain progressively diminishes there
comes a time when boundary kinetics becomes
replaced by junction kinetics. This will happen to
grains of the topological class n=4 or n=5 which
are bound to shrink even after such a transition to
triple junction kinetics. Grains of topological class
n=3 will collapse without transforming into a reg-
ular polygon. Since the kinetics of triple junctions
are significantly slower than the boundary kinetics,
the four- and five-sided polygons will shrink, and
eventually contract to a point although at a mark-
edly smaller rate. Experimentally this phenomenon
will manifest itself in the mean value of the topo-
logical class of vanishing grains. In Fig. 5 experi-
mental data of grain growth in aluminum foil with
2D (columnar) structure is presented, in terms of

Fig. 5. Dependence of the mean topological class �n(s)� on
“grain size” s/�s� (normalized by the average grain size) for
pure Al [13].

the grain size dependence of the mean topological
class �n� [14]. Extrapolation of this experimental
dependence to zero area yields the mean value of
the topological class of vanishing grains. As can
be seen �n�(0)�4.2, i.e. n=4 is the smallest topo-
logical class to shrink in a stable manner.

4.2. Kinetics of structure evolution

Let us finally consider the behaviour of an n-
sided polygon (Fig. A1). The rate of change of its
area S can be represented as

dS
dt

� �V dl � �Vn�dl � �VnP (27)

where Vn is the boundary velocity parallel to the
boundary normal, P is the perimeter of the poly-
gon.

As can be seen from Fig. A1

Vn � Vtj· cos (p /2�
) (28)
� mtj·s[2 cos 
�1] cos (p /2�
)

Since the angle 
 for a regular n-sided polygon
is equal to p(n�2)/2n, Eq. (28) can be rewritten as

Vn � mtj·s[2 sin (p /n)�1] cos (p /n) (29)

where n is the topological class of the grain. From
equations (27) and (29) we obtain the rate of
change of the grain area S, when grain boundary
motion is controlled by the displacement of the tri-
ple junctions

dS
dt

� �mtjs[2 sin (p /n)�1]cos (p /n)P (30)

4.3. Effect on microstructure evolution

In essence, therefore, a limited triple junction
mobility always slows down the evolution of grain
microstructure of polycrystals, irrespective
whether the topological class of the considered
grain is smaller or larger than 6. The mere fact that
there is a growing grain with triple junctions of
low mobility requires the existence of other grains
with n�6 to surround it. There is no point in dis-
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cussing to which grain their common junction
belongs. The only exception holds for n=6, since
a hexagonal grain structure becomes unstable when
the contact angle 2
�2p/3. Since the actual mag-
nitude of 
 is determined by the triple junction
and grain boundary mobility as well as the grain
size and is independent of the number of sides of
a grain, there is no unique dividing line between
vanishing and growing grains with respect to their
topological class anymore, like n=6 in the Von
Neumann–Mullins approach.

When grain boundary migration is completely
controlled by triple junction motion, it is interest-
ing to compare the obtained Eq. (30) with the Von
Neumann–Mullins relation Eq. (5), which gives the
rate of area change of a grain with topological class
n under the condition that the triple junctions do
not affect grain boundary motion [2]. Evidently,
the qualitative behaviour of equations (4) and (5)
is similar. Grains with n�6 will grow while those
with n�6 will disappear in accordance with both
equations (5) and (30). What distinguishes equa-
tions (30) and (5) is, firstly, the dependence of the
rate of change on the topological class n. Accord-
ing to Eq. (5), dS/dt increases infinitely with the
number n, whereas for the triple junction kinetics

lim
n→	

dS
dt

� mtjPs

The second distinctive difference is connected
with the dependence of the rate of area change on
the grain size. The Von Neumann–Mullins relation
Eq. (5) does not depend on the grain size, whereas
Eq. (30) relates the rate of area change to the grain
size through the perimeter P of the grain.

5. Conclusions

The effect of triple junction mobility on the rate
of change of the grain area during 2D grain growth
was investigated. It was found that a finite junction
mobility exerts a drag on the adjoining grain
boundaries. This is reflected by a deviation of the
grain vertex angles at triple junctions from their
equilibrium value 2p/3 and correspondingly, by a
modification of the Von Neumann–Mullins

relation. It was shown that for the situation when
the triple junction influence on grain boundary
motion is large enough, but nevertheless the grain
boundary motion is controlled by grain boundary
kinetics, the triple junction influence results in a
reduced rate of microstructure evolution during
grain growth, since the effective topological class
of growing grains (n�6) is decreased and of
shrinking grains (n�6) is increased. The con-
sidered problem and thus, the obtained relations,
are relevant for the kinetics of microstructure evol-
ution in polycrystals, especially in nanocrystalline
systems, and in the case of abnormal grain growth.

It was shown that for triple junction kinetics, i.e.
when grain boundary motion is controlled by the
displacement rate of triple junctions, the Von Neu-
mann–Mullins relation is replaced by a relation,
that does not only take into account the topological
class of a grain but its perimeter as well. Moreover,
the structure would stabilize if it attains an arrange-
ment of regular polygons, in contrast to a hexag-
onal arrangement that would frustrate a structure
in the regime of boundary mobility controlled grain
growth, e.g. in the Von Neumann–Mullins case.
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Appendix A

Let us consider a regular n-sided polygon, where
one part, which includes 2 sides and 3 angles, is
slightly different from the other, regular part of a
polygon (Fig. A1). The angle a is the angle
between the bisector of the angle y and the basis
of the triangle considered; g is the angle of a reg-
ular n-sided polygon, g=(p/n)(n�2). According to
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Fig. A1. Sketch of the shape evolution of an n-sided polygon for two alternative directions of the bisector.

the considered conditions there are three “non-reg-
ular” angles: one of them is equal to 2
 (Fig. A1),
two others are equal to y. Obviously, 2
+2y=3g,
or y=(3g�2
)/2.

The change of the angle 
 due to a displacement
of the triple junction can be expressed as

tan (
 � d
)�tan q � (1 � tan2 
)d
 (A1)

or

(1 � tan2
)d
 �
a0�dl2· cos a

h0�dl1�dl2 sin a
(A2)

�tan 


The displacements of the triple junctions during
the time interval dt can be written as [6,9]

dl1 � V1dt � mtjs(2 cos 
�1)dt (A3)

dl2 � V2dt � mtja�2 cos
y
2

�1�dt

and the change of the angle 
 can be expressed as

(1 � tan2
)d
 �

a0�mtjs�2 cos
y
2

�1� cos�p2��
 �
y
2��

h0�mtjs(2 cos 
�1)dt�mtjs�2 cos
y
2

�1� sin �p2��
 �
y
2��dt

�
a0

h0

�
mtjsa0dt

h2
0

���2 cos
y
2

�1� sin �
 �
y
2�ctn 
 (A4)

� 2 cos 
�1 � �2 cos
y
2

�1� cos �y2 � 
��

The rate of a change of the angle 
 reads

d


dt
�

mtjsa0

h2
0

cos2 
���2 cos
y
2

�1� sin �
 �
y
2�ctn
 � 2 cos 
�1 (A4a)

� �2 cos
y
2

�1� cos �y2 � 
��
For 
=g/2 we arrive at
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d


dt
�

mtjsa0

h2
0

cos2
g
2���2 cos

g
2
�1�

sin g ctn
g
2

� �2 cos
g
2

�1� � �2 cos
g
2

�1� (A5)

cos g� � 0

For the case of an alternative direction of the
bisector (Fig. A1(b)) we obtain the same equation.
Actually, for this configuration

a �
y
2

��p2�
�
2y � 2
 � 3g

and, as can be seen

d


dt
�

mtjsa0

h2
0

cos2 
���2 cos
y
2

�1� cos a ctn 


� (2 cos 
�1)��2 cos
y
2

�1� sin a�
We arrive at the same equation, which for


=(g/2) gives the same result, namely

d


dt
�
=
g
2

� 0 (A6)

Consequently, we derived a general expression,
which shows that for n-sided polygons at 
→(g/2)
the rate of change of the angle 
, (d
/dt)→0,
where g is the angle for a regular n-sided polygon.

The next steps are to prove that the equilateral
shape is stable, in other words that the system —
a regular n-sided polygon — returns to the equi-
lateral state after being displaced from this state.
The sign of the derivative (d/d
)(d
/dt)
=h(
,n)|
(g/2) is an index of the stability of the
equilateral shape, namely this shape will be stable
if the function h(
,n) is negative at the point

=(g/2). Actually, if the function h(
,n) is posi-
tive at 
=(g/2) the system will move in the direc-
tion prescribed by the sign of the deviation
d
:d(d
/dt)=h(
,n)|
(g/2)d
, while the stable
behavior of the system is characterized by the
opposite reaction to the perturbation. Namely, if a
deviation d
 from the position 
=(g/2) is positive,
the system will return to its stable position by

decreasing the angle 
. Similarly, if a deviation
d
 is negative, a stable system will respond by
increasing 
 to return to equilibrium. Conse-
quently, only a negative value of the function
h(
,n) reflects a stable behavior of the system.

The desired function h(
,n) can be easily
derived from Eq. (A5)
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2
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As shown above, the first term on the right-hand
side is equal to zero at 
=(g/2). So, the function
h(
,n)|
(g/2) can be represented as

h(
,n)�
=
g
2

(A9)
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Table A1
Value of the function h(
,n)|
(g/2) for n-sided polygons

n
h(
,n)�
 �

g
2

� B�cos2
g
2�h0(n)

in terms of B

3 +0.30
4 �0.75
5 �0.77
6 �0.62
7 �0.52
8 �0.42
9 �0.35
10 �0.29
11 �0.24
12 �0.20
– –
18 �0.0975

where h0(g) is defined by this equation.
Inasmuch as the angle g is defined by the topo-

logical class n of regular polygons, namely,
g=(p/n)(n�2), the magnitude and, what is more
important, the sign of the function h can be easily
determined (Table A1). If in contrast to the
assumption made above the polygon is not sym-
metrical, then it will be symmetrized during grain
boundary motion. For example, consider an n-
sided polygonal grain (Fig. A1), for which one of
the triple junctions, e.g. triple junction 1, deviates
from the position of a bisector of 
 by d
. The
change of tan (
 � d
) in a time interval dt is
again described by Eq. (A3). Hence, the stability
obtained for 
→g /2 requires an equilateral shape
of the polygon. In summary, the steady state shape

of a 2D grain under triple junction kinetics is an
equilateral polygon.

As can be seen, an equilateral shape is stable
indeed for all polygons. The sole exception is a tri-
angle.
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