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Abstract

We present a new analysis of the relative rate of growth or shrinkage of grains in a two-dimensional network, based on the clas-

sical von Neumann–Mullins (VN–M) analysis. We find that an analysis of the stability of the grain shape during shrinkage or

growth shows that any change in the regular 2D grain leads to changes in the shape. We also re-examine a recent analysis that claims

to have invalidated the VN–M relationship, but find that it is still valid, and that the cited analysis, in fact, confused a second order

correction with a first order problem, partly because their derivation was in error. The erroneous magnitude of the discrepancy led

them to use unphysical issues to explain the discrepancy. The way in which the curvature is distributed along the perimeter of a grain

only gives rise only to second order corrections to the rate of change of area as a function of grain topology (number of sides).

� 2004 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
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1. Introduction

The von Neumann–Mullins (VN–M) relation [1,2]

constitutes a basis for practically all theoretical and

experimental investigations as well as computer simula-

tions of microstructural evolution in 2D polycrystals in

the course of grain growth [3–5].

For grain growth in a 2D system, Mullins [2] derived

a fundamental relation, which was originally formulated

by von Neumann for 2D soap froth [1] based on differ-
ential pressures between adjacent cells in the froth. von

Neumann�s analysis makes certain very fundamental

assumptions, namely:
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(1) All grain boundaries possess equal mobilities and

surface tensions, irrespective of their misorientation
and the crystallographic orientations of the bound-

aries;

(2) The mobility of a grain boundary is independent of

its velocity;

(3) The triple junctions do not affect grain boundary

motion; therefore, the contact angles at triple junc-

tions are always in equilibrium and, due to the first

assumption, are equal to 120�.

Consider a 2D grain with area S (Fig. 1) [1,2].

In the time interval dt, all points on the grain bound-

aries of the grain will be displaced normal to the grain

boundaries by the amount Vdt, where V is the grain

boundary migration rate. Accordingly, the rate of

change of the grain area S can be expressed by

dS
dt

¼ �
I

V d‘ ð1Þ
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Fig. 1. Definition of parameters for the effect of triple junctions for a

calculation of change of area of a grain.
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where d‘ is an element of the grain perimeter. For grain

growth

V ¼ cbmbK � AbK ð2Þ
where mb is the grain boundary mobility, cb is the grain
boundary surface tension, j is the local curvature of the

grain boundary:

j ¼ du
d‘

ð3Þ

where u is the tangential angle at any given point of the

grain boundary.

From Eqs. (1)–(3), it follows that

dS
dt

¼ �Ab

I
du ð4Þ

If the grain were bordered by a smooth line, the integral

in Eq. (4) would equal 2p. However, because of the dis-
continuous angular change at every triple junction, the

angular interval Du=p/3 is subtracted from the total

value 2p for each triple junction. Consequently

dS
dt

¼ �Ab 2p � np
3

� �
¼ Abp

3
ðn� 6Þ ð5Þ

where n is the number of triple junctions for each respec-

tive grain, i.e. the topological class of the grain. Thus the

rate of area change is independent of the shape of the

boundaries and determined by the topological class n

only. Grains with n>6 will grow and those with n<6

will disappear [2].
We would like to emphasize especially the generality

of the approach considered and its consequences. Since

the result expressed in Eq. (5) does not depend on the

shape of the moving boundaries, the rate of grain area

change is determined only by the number of the adjacent

(neighboring) grains, i.e. by the topological class of the

grain represented by the number of triple junctions of

the grain. That is why an attempt to revise the VN–M
relation attracts considerable attention from materials

scientists. The case in point is the paper of Gusak and
Tu [6], on, as they wrote, the invalidity of von Neu-

mann–Mullins (VN–M) theorem. Therefore we analyse

the problem, given in [6], in more detail.

The authors of [6] limit their analysis of the validity

of the VN–M relation to a consideration of a 3-sided

grain whose boundaries are circular arcs. Of course,
the relation is still valid for this specific, restricted case.

Thus, the authors consider the growth or rather shrink-

age behaviour of a ‘‘regular convex triangle’’ under three

assumptions, which comply with the derivation of the

VN–M relation.

Their derivation yields that the rate of grain area

change is given by

dS
dt

¼
Xn
i¼1

liV i ¼ �mbcb
Xn
i¼1

li
Ri

¼ pmbcb
3

� ðn� 6Þ

¼ C � ðn� 6Þ ð6Þ

where the constant C does neither depend on time and

size, nor on the ‘‘number of neighbors’’.

‘‘We will demonstrate below’’,––the authors write,––

‘‘that the above mentioned assumptions are not self-
consistent and the VN–M-theorem is invalid. To prove

the invalidity of any theorem, it is enough to have just

one example showing that it is wrong. We will consider

a simple, symmetric case of a 3-sided (based on a right

triangle) grain shrinking symmetrically [6]. For this pur-

pose the authors considered the shrinkage of a regular

convex triangle, using the VN–M theorem and a ‘‘direct

derivation’’ by computing the area change of a regular
convex triangle.

The VN–M approach gives, naturally:

dS
dt

¼ �pmbcb ð7Þ

whereas the ‘‘direct derivation’’ of grain area change in

the case, when the regular convex triangle is shrinking,

they give as

d 1
2
a2

ffiffi
3

p

2
þ 3 1

2
R2 p

3
� 1

2
a2

ffiffi
3

p

2

� �� �
dt

¼ d

dt
p �

ffiffiffi
3

p

2
a2

 !

¼ �2ðp �
ffiffiffi
3

p
Þmbcb ð8Þ

The authors attempt to explain the discrepancy by con-
sidering in greater detail the motion of different parts of

a moving grain boundary. The VN–M theory indeed

deviates from the exact solution, which, however, is a

correction of second order.
2. Second order corrections

Gusak and Tu (GT) [6] examined a 3-sided grain with
uniformly curved sides and attempted to relate the area

rate of change to its area for which a simple analytical

formula gives the area. With 120� dihedral angles, the
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equivalent radius of the circular arcs comprising its sides

is equal to the chord connecting each pair of vertices.

According to the VN–M theorem, the area rate of

change is

dS
dt

¼ pmbcbð3� 6Þ
3

¼ �pAb ð9Þ

This formula clearly assumes that each arc moves

uniformly towards its center of curvature. One can think

of the geometry as three 60� sectors of a circle where

each sector is contracting at the same rate. Note that,

for uniformly curved sides, there is a small additional

loss of area at each vertex because of the overlap be-

tween each pair of arcs (Fig. 2). The correction is of
order dR2 where dR is the decrement in the radius.

With the area of the figure given by

S ¼ ðp �
ffiffiffi
3

p
Þ

2
R2 ð10Þ

dS
dR

¼ ðp �
ffiffiffi
3

p
ÞR ð11Þ

When one decreases the size of the 3-sided grain by dR,

this is not equal to the amount by which the each circu-

lar arc moves in towards its center of curvature. The
change in R is the sum of two changes, i.e. the motion

of the curved arc by de and the motion of the opposite

vertex towards the center, dq The area rate of change

given by the VN–M formula can be related to the mo-

tion of an equivalent circular arc of (arc) length pe:

dS
dR

¼ pe ð12Þ

In order to relate the two approaches to estimating the

area rate of change, all we need is the ratio of de to dq
which by inspection of Fig. 2 is

cos 30	dq ¼ de ) dR ¼ de þ dq ¼ 1þ 2ffiffiffi
3

p
� 	

de ð13Þ
Fig. 2. Diagram of a 3-sided grain with an inscribed equilateral

triangle with sides of length R. Each boundary of the grain is an arc of

a circle and the internal dihedral angle at each corner is 120�,
corresponding to local vertex equilibrium and isotropic grain bound-

ary energy. If the grain shrinks in size by dR each vertex of the

inscribed triangle moves in by dq and each boundary arc moves in by

de, where dR=de+dq.
Considering the area of the particular geometrical figure

thus yields a slightly different value for the area rate of

change:

dS
dt

¼ �ðp �
ffiffiffi
3

p
Þ 1þ 2ffiffiffi

3
p

� 	
Ab ð14Þ

The numerical difference between these two equations

(9) and (10) is of order 3%. This is much smaller than the

quantity claimed by the cited paper and no additional
ad hoc assumptions are required in order to understand

it. Note that this discrepancy depends on an assumption

of a symmetrical figure with equal curvature at all points

on the perimeter. Deviations of the perimeter shape that

place the curvature away from the triple points will de-

crease the difference. There is an equivalent correction

for all the regular grain shapes with equally curved

perimeters. For the simplest case of an infinitely large
grain, for which the VN–M formula predicts an area

rate of change that is

1

n
dS
dt

¼ 1

n
pAbðn� 6Þ

3
� pAb

3
ð15Þ

The geometry of each circular segment is simple and the

distance between two triple points is R, where R is the
radius of the segment. Therefore the area rate of change

per segment is R. From this specific geometry, the area

rate of change per circular segment is simply this:

dA
dt

¼ �Mc ð16Þ

The difference between these two estimates is p/3=
1.0472. Here again the discrepancy is very small and will

also be affected by the actual path of the grain boundary

between the two triple junctions because it is only mo-

tion of the grain boundary immediately adjacent to the

triple junction that leads to an excess or deficit com-

pared to the VN–M formula.
3. Constant curvature approach

The discrepancy between this result [6] and the VN–

M relation of 2D-grain growth concerns the magnitude

of the growth or shrinkage rate of a grain of topological

class n. Both approaches yield a rate of area change in
proportion to (n�6). The two approaches, however,

cannot yield the same numerical result, since both

assume different boundary conditions. The VN–M ap-

proach only makes use of the correct physical behaviour

that the growth rate of a grain boundary segment scales

with the local curvature (Eq. (2)) and does not assume

any particular shape of the boundary. Hence, every

boundary element is displaced normal to itself according
to its curvature.

In contrast, GT impose an additional boundary con-

dition that the boundaries have a constant curvature
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such that the contact angles at the triple junctions are in

equilibrium. For each displacement of a boundary, for

instance of a triangular grain, the curvature has to be

readjusted to account for equilibrium at the junctions.

In fact, the curvature will increase with progressing

grain growth owing to the fact that the grain shrinks.
Therefore an additional adjustment of the grain bound-

ary geometry has to occur in order to maintain the

proper curvature. In the VN–M approach, such an

adjustment is not enforced, since the boundary shape

can be arbitrary. Equilibrium at the junctions is estab-

lished locally, and the curvature driven grain boundary

motion maintains or reduces the curvature in contrast

to the GT approach. Therefore, the GT and VN–M ap-
proach cannot yield the same result, since both consider

a different motion of the boundaries. In the GT ap-

proach two steps of motion are involved, curvature dri-

ven growth and subsequent readjustment of the

curvature to reestablish constant curvature and junction

equilibrium. The VN–M approach considers only curva-

ture driven growth and disregards curvature adjustment

at junctions as an effect of second order. There is actu-
ally no physical principle that would require constant

curvature and the GT approximation is a very special

case determined entirely by geometry which however is

not realised in nature.

Therefore, we contend that the VN–M relation is

valid, and that GT have considered a special case and

arrived at incorrect conclusions. We will show in the fol-

lowing in terms of specific geometries that both approx-
imations cannot be reconciled.
4. Stability of polygonal shapes

A restatement of the fourth, additional tacit assump-

tion is that the regular convex triangle can vanish, while

still remaining a regular convex triangle, Fig. 3. In other
words the angle h (Fig. 3) is required to remain equal to

30� during grain growth, or, equivalently, the derivative
Fig. 3. Shrinking of triangle grain [6].
dh/dt should be equal to zero in the course of grain

growth (or grain shrinkage):

dh
dt


 �
h¼p=6

¼ 0

as shown in more detail in the Appendix A.

dh
dt

����
h¼p=6

¼ � 4mbcbp
a2

� 1

B1ðhÞ

����
h¼p=6

� 1:78pmbcb
a2

ð17Þ

Clearly the value dh/dt for h=p/6 is not equal to zero,

which points to the fact that the evolution of ‘‘regular
convex triangle’’ during grain growth does not follow

the scenario given in [6], namely the shrinking as a

self-similar regular triangle. If the regular convex trian-

gle is left to its own devices, it becomes an isosceles tri-

angle and collapses as a triangle of irregular shape. Its

state as a regular triangle is only one possibility among

infinite others. The correctness of the VN–M relation

cannot be judged from the behaviour of a grain of a par-
ticular shape.

In other words, the alleged invalidity of the VN–M

theorem, derived from the example of shrinkage of a

regular convex triangle, was based on an incorrect

assumption. That is why the conclusions, made by the

authors of [6], are contrary to fact.

It is interesting to consider in this context the more

general problem, namely, the behaviour of a general
n-sided 2D grain in the course of 2D grain growth. Spe-

cifically, an n-sided convex grain is considered, however,

it is easy to see, the same result would be obtained for a

concave grain. All curved boundaries are assumed to be

circular arcs. We examine a regular n-sided polygon,

assuming that one angle of the polygon is changed to

the nonequilibrium angle h, which naturally, causes

the two adjacent angles to change from c = p/n(n�2) to

c1 ¼
3c � 2h

2
ð18Þ

After a lengthy calculation we arrive at

dh
dt

¼ 8mbcb
a2BðhÞ ðn� 2Þ p

n
� p

6

� �
þ 2

p
3
� h

� �h i
ð19Þ

The expression in square brackets is equal to zero if

ðn� 2Þ 1

n
� 1

6

� 	
þ 2

1

3
� h

p

� 	
¼ 0 ð20Þ

or

n ¼ 6 1� h
p

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36 1� h

p

� 	2

� 12

s
ð21Þ

The expression (1�h/p) can only assume values in the

range 1>1�h/p>1/
ffiffiffi
3

p
. Moreover, nmust be an integer.

Only, h=p/3 complies with all conditions and n*= 4 ±2;

n1*=6; n2*= 2.
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Since it can be shown that B(h)�1jh=p/3=0 for 6- and

2-sided polygons at h=p/3 the rate of change of the angle
h(dh/dt)fi0.

Next we examine whether such ‘‘regular’’ curved con-

figurations are stable, in other words whether it will re-

turn to the regular state after being displaced from this
state. The sign of the derivative d

dh ðdh
dtÞjh¼p=3 is an index

of the stability of the studied shape. A shape will be sta-

ble only if the function d/dh(dh/dt), is negative at the

point h=p/3.
The derivative discussed can be represented as

d

dh
dh
dt

� 	����
h¼p=3

¼ gðh; nÞjh¼p=3 ð22Þ

A lengthy trigonometrical calculation shows that at

h=p/3 the expression g(h,3)=0. In other words, the deriv-
ative d

dh ðdh
dtÞjh¼p=3 for the ‘‘basic’’ regular polygonal con-

figurations considered at h=p is insensitive to the angle

changes dh which is to say that these configurations

are unstable, despite the fact that the equality
dh
dt

� ���
h¼p=3

¼ 0 is fulfilled.

As for the ‘‘regular’’ curved triangle, which is ana-

lysed in [6], for this configuration even the time deriva-

tive of the characteristic angle h is not equal to zero at

h ¼ pðdh
dt jh¼p=3 6¼ 0Þ.

This consideration can be extended to any n-sided

polygon (n„6) to yield that a regular polygon shape be-

haves unstable during grain growth even in case that dh/
dt=0 for h=p/3.
5. Conclusions

A rexamination of the evolution of the shape of

grains revealed that the VN–M relation, in the frame-

work of physically and mathematically reasonable

assumptions, is valid for all configurations of curvature

of the perimeter.

The distribution of curvature along the perimeter of a

grain can result in a second order correction to the rate

of change of area, compared to the VN–M result.
Many of the ‘‘regular’’ grain shapes that can occur

during grain growth are shown to be unstable and are

therefore likely to disappear during grain growth.

A network of grains that is undergoing coarsening

according to the VN–M relation is highly unlikely to

adopt a configuration in which the plane is tessellated

by a mosaic of regular shapes.
Fig. 4. A grain whose shape is a ‘‘convex isosceles triangle’’.
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Appendix A

We examine the evolution of a 2D ‘‘regular’’ curved
triangular grain during grain growth under VN–M con-

ditions. The main goal is to ascertain whether or not this

statement––the equality ½dh
dt �h¼p=6 ¼ 0––is justified in the

course of grain growth process.

We consider grain growth (or, more correctly, grain

shrinkage) of a convex triangle, where two sides are

equal and different from the third one of the isosceles

convex triangle shown in Fig. 4. The radii R1 and R2

are equal to R1 ¼ a
2 sinðp

3
�hÞ and R2 ¼ a�sin h

sinð2h�p
6
Þ ¼ a�sin h

cosð2
3
p�2hÞ,

respectively. The area of this convex triangle can be rep-

resented as

S ¼ 2
pR2

1

2p
2

3
p � 2h

� 	
� 2

R2
1

2
sin

2

3
p � 2h

� 	

þ pR2
2

2p
4h � p

3

� �
� R2

2

2
sin 4h � p

3

� �
þ 1

2
a2 sin 2h

ðA:1Þ
A small change of S can be expressed as

dS ¼ a2

4
� B1ðhÞ ðA:2Þ

where B1(h) is some trigonometrical function of the

angle h. On the other hand, the same change of S can
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be found by considering the displacement of the peri-

meter P of a grain, which is the VN–M approach:

dS ¼ �V dt � P ¼ �2
mbcb
R1

� 2pR1

2p
p
3
� 2h

� �
dt

� mbcb
R2

� 2pR2

2p
4h � p

6

� �
¼ �mbcbpdt ðA:3Þ

This is the expected result.

From (A.2) and (A.3) we arrive at

dh
dt

¼ � 4mbcbp
a2

� 1

fB1ðhÞg
ðA:4Þ

A simple calculation shows that the value of dh/dt in the

vicinity of h=30�.
dh
dt


 �
h¼p=6

� 1:78pmbcb
a2

ðA:5Þ
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