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Abstract

The classical concepts of grain growth in polycrystals are based on the dominant role of grain boundaries. This is reflected by the

well known von Neumann–Mullins relation. According to this approach triple junctions do not affect grain boundary motion, and

their role in grain growth is reduced to maintaining the thermodynamically prescribed equilibrium angles at the lines where bound-

aries meet. In the current study the experimental data of triple junction mobility are considered with respect to the process of grain

growth in 2D systems, in particular with regard to the controlling kinetics. When boundary kinetics prevails grain growth in a poly-

crystal complies with the von Neumann–Mullins relation. When grain growth is governed by the mobility of triple junctions the

kinetics change, and the von Neumann–Mullins relation does not hold anymore. This is the more pronounced the smaller the triple

junction mobility. We present a generalized theory of 2D grain growth including a limited triple junction mobility. In this concept

the criterion K plays a central role. It reflects the ratio of boundary to triple junction mobility but is proportional to the grain size as

well. The generalized von Neumann–Mullins relation can be expressed in terms of K. For small values of K, conspicuous changes of
microstructure evolution during grain growth and of microstructural stability are predicted. The theoretical predictions are com-

pared to results of computer simulations by a virtual vertex model.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Since metals are not transparent, we are used to

imaging crystalline microstructures by means of 2D sec-

tions, for instance in optical micrographs. Although a

number of approaches have been developed for quanti-

tative analysis of a real 3D microstructure from 2D sec-

tions [1], the 2D image provides the basis for our
understanding of the thermodynamics and kinetics of

grain structure evolution. However, 2D grain micro-

structures are not a pure mathematical abstraction. In

modern materials science objects with 2D grain struc-
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ture are physically meaningful and have achieved great

importance. Transformer sheet, thin films, coatings

and thin layers are prominent examples of objects with

2D grain microstructures.

For a variety of problems it is possible to obtain an

exact physical solution for 2D microstructures [2,3].

One conspicuous example is the classical von Neu-

mann–Mullins relation of 2D grain growth kinetics
[4,5], which determines the rate _S of change of the grain

area,

_S ¼ �Ab 2p� np
3

� �
¼ Abp

3
n� 6ð Þ; ð1Þ

where Ab ” mbcb is the reduced grain boundary mobility,

mb is the grain boundary mobility, cb is the grain bound-

ary surface tension, n is the number of triple junctions of

the considered grain, i.e., the topological class of the
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grain. Accordingly, the rate of area change is indepen-

dent of the shape of the boundaries and determined by

the topological class n only. Grains with n > 6 will grow,

and those with n < 6 will disappear [4,5].

This relation describes the kinetics of grain micro-

structure evolution and constitutes a basis for practi-
cally all theoretical and experimental investigations as

well as computer simulations of microstructural evolu-

tion in 2D polycrystals in the course of grain growth

[6–8]. The relation (1) is based on three fundamental

assumptions, namely:

(1) all grain boundaries possess equal mobilities (mb)

and surface tensions (cb), irrespective of their mis-
orientation and the crystallographic orientation of

the boundaries;

(2) the mobility of a grain boundary is independent of

its velocity;

(3) the triple junctions do not affect grain boundary

motion; therefore, the contact angles at triple junc-

tions are always in equilibrium and, due to the first

assumption, are equal to 120�.

The first assumption agrees with the so-called uni-

form boundary model and is likely to be realized in

many cases. Of course, grain boundary mobility is sig-

nificantly affected by grain boundary character [9], and

an anisotropy of grain boundary properties manifests it-

self also in grain microstructure evolution [10]. Never-

theless, in polycrystals with random texture and in
commercial alloys non-special boundaries are likely to

prevail [11–13]. For a more refined analysis, anisotropic

boundary properties also have to be taken into account,

which, however, will not change the fundamental con-

clusions of the approach presented in the following.

The second assumption complies with the principles

of absolute reaction rates. The third assumption is a

mere hypothesis and needs to be checked experimen-
tally. For this it is necessary to measure the triple junc-

tion mobility. The theoretical approaches and

experimental techniques which make it possible to study

the steady-state motion of grain boundary systems with

triple junction were put forward and developed in [14–

18]. It was shown that the behaviour of a grain bound-

ary system with triple junction is determined by the

dimensionless criterion K = mtja/mb, where mtj is the tri-
ple junction mobility, and a is the grain size:

K ¼ 2h
2 cos h� 1

; n < 6; ð2Þ

K ¼ � ln sin h
1� 2 cos h

; n > 6: ð3Þ

The link between parameter K and the angle h at the

tip of a triple junction makes it possible to measure the

value of K and, in turn, the triple junction mobility for
different metals and grain boundary systems [14,17]. It

was found that the triple junction mobility is finite and

may be low. Triple junction migration experiments were

complemented by molecular dynamics simulation stud-

ies of the migration of grain boundaries with triple junc-

tions. The simulations confirmed that the triple junction
mobility can be limited and sufficiently low to affect the

rate of grain boundary migration [19–22]. It is empha-

sized that the molecular dynamics simulation studies

of triple junction migration were performed for the same

geometrical configurations as used in experiment. On

the whole, the simulations support the experimental

observations of non-equilibrium triple junction angles

and ascertain a substantial triple junction drag [14–17].
2. The generalized von Neumann–Mullins relation

Since the third assumption made to derive the von

Neumann–Mullins relation can obviously be violated,

it is of interest to consider the von Neumann–Mullins

relation for the case of non-equilibrium contact angles
at the triple junction. To conserve the central idea of

the von Neumann–Mullins relation, let us consider a sit-

uation when the influence of the triple junction is rather

large, but nevertheless, the motion of the system can be

viewed as grain boundary motion, since the driving

force is still due to grain boundary curvature, i.e., the

role of the triple junction is reduced to a change of the

angle h. Grain boundary migration affected by triple
junction drag can be considered as motion of a bound-

ary with mobile defects [18], i.e.,

_S ¼ � Ab

1þ 1
K

2p� n p� 2hð Þ½ �: ð4Þ

Obviously the expression for the rate of area change

will be different for grains with n < 6 and n > 6. Since

the limited triple junction mobility reduces the steady
state value of the angle h as compared to the equilibrium

angle, the shrinking rate of grains with n < 6 decreases.

For grains with n > 6 triple junction drag increases the

angle h and also reduces the growth rate of such grains.

In other words, microstructural evolution is slowed

down by triple junction drag for any n-sided grain. Since

the actual magnitude of h is determined by triple junction

and grain boundary mobility as well as the grain size
there is no unique border between vanishing and growing

grains with respect to their topological class anymore.

Since K = K(h) we can find the relation between the

rate of grain area change and the value of K, combining

Eq. (4) with Eqs. (2) and (3), respectively. Close to equi-

librium (h = p/3) we can obtain an explicit expression for

h(K) by expanding the function 2cosh�1 into a power

series in the vicinity of h = p/3 for n < 6 and n > 6,
respectively, and neglecting higher order terms. For

n < 6,



Fig. 1. Dependence of n�H and n�L on K.
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2h¼ K 2cosh� 1ð Þ

ffi K 2cosh� 1ð Þh¼p=3 þ �2sinhð Þh¼p=3 h� p=3ð Þ þ � � �
h i

ð5Þ
or

h ¼
ffiffiffiffiffiffi
3p

p
K

6þ 3
ffiffiffi
3

p
K

ð6Þ

and, therefore, with Eq. (4),

_S ¼ mbcbp

3 1þ 1
K

� � n
6þ

ffiffiffi
3

p
K

2þ
ffiffiffi
3

p
K
� 6

 !
: ð7Þ

For K ! 1 – free boundary kinetics regime – Eq. (7)

is identical with the classical von Neumann–Mullins

relation.
We obtain for the topological class n* of grains for

which _S ¼ 0,

n� ¼ 2þ
ffiffiffi
3

p
K

1þ
ffiffi
3

p

6
K

: ð8Þ

Evidently, n* decreases with K, and for K! 1
n* ! 6. For n > 6 Eq. (3) yields

1

K
¼ 2cosh�1

lnsinh
ffi 2cosh�1

lnsinh

� �
h¼p=3

þ �2sinhð Þ lnsinh� 2cosh�1ð Þcoth
lnsinhð Þ2

" #
h¼p=3

h�p=3ð Þþ �� �

ð9Þ
and in 1st order approximation,

1

K
¼ � 2 sin h

ln sin h

� �
h¼p=3

h� p=3ð Þ

¼ �
ffiffiffi
3

p

ln sin p=3
h� p=3ð Þ ð10Þ

or

h ¼ p=3þ 1

KB
; ð11Þ

where B ¼ �
ffiffi
3

p

ln sin p=3 and with Eq. (4),

_S ¼ mbcbp

3 1þ 1
K

� � n 1� 6

pKB

� �
� 6

� 	
: ð12Þ

As for n < 6, also for n > 6 Eq. (12) also becomes
identical with the von Neumann–Mullins relation for

K! 1 and the value of n* reads

n� ¼ 6

1� 6
pKB

: ð13Þ

In this case n* grows with decreasing K but n ! 6 for

K! 1.
It is seen that the drag effect of grain boundary triple

junctions results in a change of the topological limit be-

tween the classes of shrinking and growing grains such
that the limit decreases for shrinking grains but increases

for growing grains. This behavior n*(K) becomes obvi-

ous from Fig. 1, where the cases n < 6 and n > 6 are dis-

tinguished as n�LðKÞ and n�HðKÞ, respectively.
3. Grain stability

Since there is a gap between n�L and n�H it is an inter-

esting question as to how grains behave with

n�L < n < n�H. From the above discussion it appears that

such grains are neither capable to grow nor to shrink

(Fig. 1), i.e., grains of the topological classes in the
hatched area of Fig. 1 will be stable. This can be under-

stood from the following consideration.

According to Eq. (4) _S becomes zero for

h ¼ p
2

1� 2

n

� �
: ð14Þ

For any integer n, h(n) is exactly the (half) junction

angle for an n-sided polygon, i.e., h = 60� (=p/3) for

n = 6, h = 54� (=3p/10) for n = 5, h = 45� (=p/4) for

n = 4, h = 67.5� (=3p/8) for n = 8, etc.

This means for a given (integer) n* the angle h corre-
sponds to the (half) internal angle of an n*-sided poly-

gon, i.e., the boundaries are flat, and without

curvature the polygon is stable.

The important point to consider is that the angle h is

a dynamic angle, i.e., it develops during motion of the

boundaries that are connected at the triple junction.

Prior to motion boundaries at a triple junction will ad-

just h to attain the equilibrium angle (h = 60�). There-
fore, 6-sided grains have flat boundaries, n < 6-sided

grains have convex boundaries, n > 6-sided grains have

concave boundaries. If the system is allowed to move

the curved boundaries will move and adjust h to the dy-

namic value, which is less than 60� for n < 6 and larger

than 60� for n > 6.

The 6-sided grain will not change since it has flat

boundaries to begin with, so there is no driving force
for grain boundary motion and, therefore, no change

of h = p/3. Let us consider a 5-sided grain under the

condition n* = 4, i.e., a 4-sided grain will attain flat
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boundaries and, therefore, is stable (Fig. 2). Prior to mo-

tion the 5-sided grain has convex boundaries with p/
3 = h at the junctions. Triple junction drag will change

the angle to h = p/4. Corresponding to n* = 4, the angle

h = p/4 = 45� is smaller than the junction angle for a

5-sided grain with flat boundaries. During the change
of the angle from initially h = 60� to h = 45� for the gi-

ven K, the angle will pass through h = 54�, where the

boundaries become flat and the driving force ceases.

The configuration is locked. The junction angle may re-

turn to h = 60� to establish static equilibrium at the junc-

tion, but this will make the boundary convex and drive

the junction angle back to 54�. In essence, if the 5-sided

grain were to attain the angle h = 45� from initially 60�,
it would have to change the curvature from convex to

concave. For this to happen it must pass through a flat

configuration, where the driving force ceases and the

system becomes locked.

The same holds for a grain with n* > 6. Let us con-

sider n* = 8 and a 7-sided grain. Initially, h is in static

equilibrium with h = 60�. The boundaries are concave.

Because of n* = 8 the dihedral angle of the 7-sided grain
will change to a terminal 67.5�. At h = 5p/14 = 64.3� the
7-sided grain will arrive at a configuration with flat

boundaries. Again, the boundaries at static equilibrium

are concave. A 7-sided grain for h = 67.5 � with a K cor-

responding to n* = 8 would have convex boundaries. It

never can get there, since the change in curvature re-

quires a transient flat boundary, where the system will

become locked, when only curvature drives the bound-
ary system.

In summary, grains with n sides with n�L < n < n�H be-

come locked and can neither grow nor shrink. This phe-

nomenon might be essential for understanding the high

stability of grain microstructure in ultrafine grained and

nanocrystalline materials, specifically in 2D thin layers

and films. For K! 1, i.e., for h = p/3 = const., the bor-

der between growing and shrinking grains is the singular
value n* = 6. It dissociates to an interval (between n�L
and n�H) for K � 1. Such an effect is expected to further

stabilize the grain microstructure. Since K depends on

grain size, this stabilization is more pronounced in fine

grained and nanocrystalline systems.
5 Sided grain−

90˚

concave

flatconvex

120˚

108˚

Fig. 2. Geometry of a 5-sided grain during transition from static to

dynamic equilibrium for n* = 4.
4. Triple junction controlled growth

So far we have considered the motion of a grain

boundary system with triple junctions in the case where

the system moves under boundary kinetics while triple

junctions only slightly disturb the motion of the system.
In the following we shall consider the case when the mo-

tion of grain boundaries is controlled by the motion of

triple junctions. To begin with we will show that under

triple junction control in the course of grain growth in

2D systems the grains will eventually be bordered by

straight (flat) boundaries, i.e., they will assume a polyg-

onal shape.

Let us consider the curvature j of a grain boundary
system with triple junctions (for the configurations

which relate to n < 6 and n > 6). As derived in [18] for

the system with n < 6 we obtain with n = a/2h,

j ¼ 1

n
e�x=nþln sin h ¼ 2h

a
e�ð2h=aÞx sin h

¼ K
a
sin hð2 cos h� 1Þe�ð2h=aÞx; ð15aÞ

while for the system with n > 6 it was shown that,

j ¼ ln sin h
x0

eðx=x0Þ ln sin h ¼ K
x0
ð1� 2 cos hÞeðx=x0Þ ln sin h:

ð15bÞ
Since for triple junction kinetics K ! 0, also the grain

boundary curvature j approaches zero, i.e., the

grain structure of 2D polycrystals comprises straight
grain boundaries. In other words, under triple junction

kinetics the grains in a 2D polycrystal represent a system

of contiguous polygons.

More specifically, as shown in [18], in the framework

of triple junction kinetics a polygon of arbitrary shape

will be transformed into an equilateral polygon, and

any deviation from an equilateral polygon will generate

a force to restore the equilibrium shape. The only excep-
tion is a triangle, i.e., a grain of topological class n = 3 is

always unstable and must disappear. Eventually, all

other shrinking polygons must by necessity go through

this stage, when grain growth is controlled by the mo-

tion of triple junctions.

This phenomenon has important consequences for

the development of grain growth. To demonstrate this

we take a look at the evolution of a shrinking grain in
the course of grain growth. The topological class of such

a grain must be lower than 6, naturally taking into ac-

count all corrections to the von Neumann–Mullins rela-

tion, given above. We emphasize that the transition

between boundary and triple junction kinetics does not

only depend on grain boundary and triple junction

mobility, but on the size of a grain as well. When the size

of a grain diminishes progressively there comes a time
when boundary kinetics becomes replaced by junction

kinetics. This will happen to grains of the topological
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class n = 4 or n = 5 which are bound to shrink even after

such a transition to triple junction kinetics. Grains of

topological class n = 3 will collapse without transform-

ing into a regular polygon. Since the kinetics of triple

junctions is significantly slower than boundary kinetics,

the 4- and 5-side polygons will shrink, and eventually
contract to a point although at a markedly smaller rate.

How this phenomenon reveals itself during grain growth

will be considered below.

Let us finally consider the behavior of a regular

n-sided polygon with an interior and exterior circle of

radius ~r, respectively ~R. As shown in [18], the rate of

grain area change _S can be expressed as

_S ¼ �mtjcn~R sin
2p
n

� �
2 sin

p
n

� �
� 1

h i
¼ �2mtjcn~r sin

p
n

� �
2 sin

p
n

� �
� 1

h i
: ð16Þ

In essence, a limited triple junction mobility always

slows down the evolution of grain microstructure of

polycrystals, irrespective of whether the topological

class of the considered grain is smaller or larger than

6. Formally, for grains with n < 6, the sluggish motion

of the triple junctions ‘‘reduces’’ the effective topological
class of growing grains, while for grains with n > 6 the

triple junction behavior makes the topological class of

vanishing grains appear larger.

The mere fact that there is a growing grain with triple

junctions of low mobility requires the existence of other

grains with n < 6 to surround it. There is no point in dis-

cussing to which grain their common junction belongs.

The only exception holds for n = 6, since under triple
junction control a hexagonal grain structure with contact

angle 2h = 2p/3 becomes unstable. Since the actual mag-

nitude of K is determined by the triple junction and grain

boundary mobility as well as by the grain size and is inde-

pendent of the number of sides of a grain, there is no un-

ique dividing line between vanishing and growing grains

with respect to their topological class anymore, like n = 6

in the von Neumann–Mullins approach. As has been de-
tailed above for sufficiently small K the border between

shrinking and growing grains degenerates to an interval

bounded by the lines n�HðKÞ and n�LðKÞ (Fig. 1) which

contracts to a point for K! 1.
5. Applications

5.1. Theoretical predictions

In the following we consider the consequences of the

two approaches for the evolution of granular micro-

structures. The distinguishing feature of the von Neu-

mann–Mullins model is the infinite mobility of grain

boundary triple junctions. This requires that grains in

a ‘‘von Neumann–Mullins polycrystal’’ are bordered
by curved boundaries. This should manifest itself in lin-

ear dependences of the mean grain area on time and of

the rate of grain area change on the topological class.

For a given reduced boundary mobility Ab = mbcb a

grain with topological number n is characterized by a

unique value of its rate of area change dS=dt ¼ _S. The
slope of the relation _SðnÞ is only determined by the re-

duced grain boundary mobility: d _S=dn ¼ mbcbp=3. (We

would like to remind the reader that both the von Neu-

mann–Mullins model and our model are based on the

uniform grain boundary and triple junction approach.)

In the opposite case, for pure triple junction kinetics

the grains in a 2D polycrystal are bordered by straight

lines, i.e., the grain microstructure is represented by a
system of space filling polygons. The temporal evolution

of such a system is defined by Eq. (16).

A practically relevant and theoretically most interest-

ing case is an intermediate situation, when the triple

junction influence is tangibly large, but nevertheless,

the evolution of the system can be still considered as

governed by grain boundary motion. In this case the

time dependence of the average grain area ÆSæ is practi-
cally linear, however, the rate of grain area change _S is

defined not only by the topological class n but by the cri-

terion K as well (Eq. (4) with (2) and (3) respectively, (7),

(12)). So, there is no unique relation anymore between _S
and topological class n of the grain; the dependence _SðnÞ
is blurred by the impact of criterion K.

The discussed consequence afforded by the developed

approach is probably the most significant one, but the
new approach also allows us to make some more quan-

titative predictions:

� Grains are neither capable to grow nor to shrink in

the intermediate situation that manifests itself in the

dependency n*(K).
� Under triple junction kinetics grains should be bor-

dered by flat boundaries, i.e., straight lines in 2D.
� Under triple junction kinetics a system of polygons

tends to transform to a system of equilateral poly-

gons. The only exception is the triangle which will

collapse without transforming into a regular polygon.

� For triple junction kinetics the rate of grain area

change can be described by Eq. (16).

5.2. Computer simulations

In both theoretical approaches only a single grain

and its behavior is considered in an unspecified, i.e.,

average environment. To study the effect of discrete

granular arrangements we employed computer simula-

tions of 2D grain growth. Curvature and boundary ten-

sion driven grain growth is best represented by a
(virtual) vertex model [23–25]. In such a model the driv-

ing force is the net grain boundary surface tension at a
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vertex. A vertex can be a triple junction or any point on

a polygonized grain boundary. For a given time interval

the equation of motion is solved concomitantly for all

vertices. Each vertex is assigned a mobility so that differ-

ent mobilities for triple junctions and boundaries can

easily be implemented.
In Fig. 3 the simulated evolution of the microstruc-

ture of a 2D polycrystal is presented at various stages

of grain growth. The evolution was fully controlled by

grain boundary kinetics. The time dependence of the

mean grain area was computed. As is apparent from

Fig. 3(a), the grains are bordered by curved boundaries.

The dependence of the mean grain area on time, and

especially the dependence of the rate of grain area
change _S vs. the topological class n of a grain are shown

in Fig. 3(b) and (c). They reflect all features that are pe-

culiar to a ‘‘von Neumann–Mullins polycrystal’’: ÆSæ in-
creases linearly with annealing time; the rate of grain

area change _S is linear in n, and the line _SðnÞ intersects
the axis n at n = 6, i.e., _S ¼ 0 at n = 6. The slope of

the line _SðnÞ ¼ pmbcb=3 is as predicted by the von Neu-

mann–Mullins relation. In essence, for boundary con-
trolled grain growth of a homogeneous system the von

Neumann–Mullins approach is convincingly

reproduced.

In order to study the effect of triple junction mobility

on grain growth, two situations were considered. The

first case related to the kinetics, when the triple junction

influence is tangibly large, but nevertheless, the evolution
Fig. 3. Simulation results for a 2D polycrystal for grain boundary kinetics (K
time t; (c) _S as function of n.
of the system can be described as a result of curvature

driven grain boundary motion. In contrast to uncon-

strained grain boundary motion, however, the bound-

aries are much more straight (Fig. 4(a)). When K is still

relatively large, 0.4 6 K 6 5.0, the mean grain area ÆSæ
changes linearly with time t, which reflects the nature
of the controlling grain boundary kinetics of the system

at this stage (Fig. 4(b)). The quantitative variation of

the rate of grain area change _S on topological class n,

which is a straight line for pure grain boundary kinetics

(Fig. 3(c)) is transformed to an area under the constraint

of a finite triple junction mobility (Fig. 4(c)). For all

topological classes a large scatter of _SðnÞ is observed.

While for unconstrained grain boundary kinetics (infinite
junction mobility) _S is a function of n only, for a system

with finite junction mobility _S becomes a function of

both n and K, _S ¼ _Sðn;KÞ (Fig. 4(c)). The straight line

in Fig. 4(c), which describes the von Neumann–Mullins

relationship, has the slope pmbcb/3 and _Sðn ¼ 6Þ ¼ 0.

As the parameter K decreases the influence of triple

junction drag becomes obvious not only in the _S–n dia-

gram, but also in changes of the dependency ÆSæ(t)
(Fig. 5). Hence, grain growth cannot be considered

anymore to be controlled by boundary kinetics affected

by triple junction drag, rather the dependency _SnðKÞ
clearly demonstrates that a finite triple junction mobil-

ity fundamentally changes the character of the func-

tion. For a given n, _SðKÞ is not represented by a

point anymore, but by a line (Fig. 6). There are two
!1): (a) Microstructure at St/S0 = 17.2; (b) normalized area St/S0 vs.



Fig. 4. Simulation result for 0.1 < K < 1.0: (a) Microstructure at St/S0 = 10.0; (b) average area ÆSæ vs. time t; (c) _S as function of n for 0.1 < K < 10.

Solid squares are the results of computer experiments, the line represents the von Neumann–Mullins relation.
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Fig. 5. Grain size vs. time for 0.01 < K < 1.0.
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issues which should be stressed. Firstly, a good agree-

ment between the computer experiment and theory is

observed. Further, according to the presented theoreti-

cal approach Eqs. (2) and (4) (or (7) and (12)) perfectly

describe in close proximity to equilibrium, i.e., for

rather large K, the influence of a finite triple junction

mobility on the rate of grain area change, _Sn, given

that all von Neumann–Mullins conditions, except the
infinite triple junction mobility, are fulfilled. The

expressions:

kn<6 �
_S
TJ

n<6

_S
VNM

n<6

ffi
n 6þK

ffiffi
3

p

2þK
ffiffi
3

p

n� 6
; ð17aÞ
kn>6 �
_S
TJ

n>6

_S
VNM

n>6

ffi
n 1� 6

pKB

� �
� 6

n� 6
; ð17bÞ

represent the ratio of the rate of grain area change for
finite triple junction mobility and for the pure von

Neumann–Mullins case. For the same value of K,
grains with n < 6 deviate more strongly from pure

grain boundary kinetics than do grains with n > 6.

Therefore, grains with n = 4 are under triple junction

control (Fig. 6), while the growth of grains with

n = 9 is governed by boundary kinetics (Fig. 6). In

other words, triple junction drag not only slows down
the rate of grain growth, but changes the grain micro-

structure of 2D polycrystals. This is also evident in

experimental observations of grain growth in thin foils

[26]. At the stage of the process where triple junction

influence becomes obvious, i.e., when the time depen-

dency of the mean grain size is linear, the grain size

distribution becomes wider.

For grain growth strictly controlled by triple junction
motion, theory predicts that the grain boundaries be-

come flat and that the grains approach a shape of equi-

lateral polygons. A polygon of arbitrary shape will be

transformed into an equilateral polygon, and any devia-

tion from an equilateral polygon will generate a force to

restore the equilibrium shape. The only exception is a

triangle, i.e., a grain of topological class n = 3 is always

unstable and bound to disappear. The computer simula-
tions fully confirm the theoretical predictions. Fig. 7 rep-

resents the grain microstructure developed under triple
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Fig. 6. The rate of grain area change _S as a function of K: (a) For grains with n = 4. Filled squares are the results of computer simulations. The solid

line represents the theoretical prediction for intermediate kinetics (Eqs. (2) and (4)) (5 < K < 25), the dotted line corresponds to the von Neumann–

Mullins relation. (b) For grains with n = 9. The solid line represents the theoretical prediction for intermediate kinetics (Eqs. (3) and (4)). The dotted

line corresponds to the von Neumann–Mullins relation. (c) For grains with n = 4, and 0.1 < K < 1.0. The solid line represents the theoretical

prediction for triple junction kinetics (Eq. (16)). (d) For grains with n = 9. The solid line is the theoretical prediction for intermediate kinetics (Eqs. (3)

and (4)), the broken line represents triple junction kinetics.

Fig. 7. Simulation results for a 2D polycrystal at K 	 10�4. Micro-

structure at St/S0 = 10.0.

Fig. 8. Measure of boundary straightness: (a) diagram explaining how

the value g was measured; (b) computer simulation (filled squares) up

to St/S0 = 10 and theoretical prediction (solid line) of g(logK).
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junction kinetics. The grains are bordered by straight

lines. The ratio,

g ¼
Pn

i¼1

Licurv
Listr

n
;

gives a quantitative measure of grain boundary curva-

ture, where Lcurv is the length of a curved boundary
and Lstr is the distance between the two corresponding

triple junctions (Fig. 8). When K tends to zero, g ! 1

(Fig. 8(b)).

To assess the theoretical prediction that under triple

junction kinetics all 2D grains of arbitrary shape become

converted to equilateral polygons – except for triangles –

we define the parameter,

bn ¼
L1
L2
þ L2

L3
þ � � � þ Ln�1

Ln
þ Ln

L1

n
; ð18Þ
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where Li is the length of the ith side of an n-sided grain.

When the shape of a grain approaches an equilateral

polygon, b ! 1. The only exception is a triangle, which
is unstable and has to disappear, i.e., b3 should not

converge toward b3 = 1. The behavior of bn with time

was determined from the computed microstructure,

including b3 (Fig. 9). Apparently for all studied n-sided

polygons b ! 1, except for b3 which changes randomly.

Fig. 10 confirms that such behavior of bn holds for tri-
ple junction kinetics only. The value bn was measured

up to St/S0 = 10. As is apparent from Figs. 9 and 10
a grain size 10 times larger than the initial grain size

was reached in a much shorter time for boundary

kinetics.
The function _SðnÞ for triple junction kinetics is pre-

sented in Fig. 11. The curve is calculated according to

Eq. (16) while the symbols represent simulation results.

Except for the intrinsically unstable triangular grains

(n = 3), the theoretical predictions are in good agree-

ment with the computer experiment. We note that _S rises

with n and approaches a limit (Eq. (16)) contrary to the

predictions of the von Neumann–Mullins relation.
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6. Summary

The motion of grain boundaries with triple junctions

is considered. Particular emphasis is placed on the role

of triple junction drag during grain growth and grain
microstructure evolution. It is shown that the classical

view of grain growth in polycrystals which is based on

grain boundary motion only is inadequate to describe

the process. A new theoretical concept is proposed that

accounts also for limited triple junction mobility. Specif-

ically, it was shown that a finite mobility of grain bound-

ary triple junctions does not only slow down the grain

growth rate but also changes microstructure evolution
and topology. The predictions of the theoretical concept

were found to compare well with computer simulations

of 2D grain growth.
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