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The paper is dedicated to a major topic of Grain Boundary Engineering: evolution and
stability of granular microstructures. The various mechanisms of grain microstructure
stabilisation are considered. The role of grain boundaries, vacancies and especially triple
junctions as dragging factors in grain growth of polycrystals is comprehensively discussed.
A hierarchy of efficiency of different mechanisms for grain growth inhibitionis presented. It
can be utilized as a basis for an assessment of the stability of fine grained and
nanocrystalline materials. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
A paper published in this special issue dedicated to
Grain Boundary Engineering (GBE) should reflect this
direction or develop it. GBE declares a possibility of
control or, at least, of directed change of the properties
of a material through the formation of an optimal dis-
tribution of grain boundaries with special properties.
This concept has been embodied in the papers of the
groups of Watanabe, and Palumbo, respectively [1–5].
The practical realization of this idea was reduced to
thermomechanical treatment, most often to the ther-
mocycling. Such treatment results in an increase of
the number of special grain boundaries, predominantly
twin boundaries. While not questioning the prospects of
such approach the authors would like to call the reader’s
attention to the fact that a deeper understanding of well
known processes or physical phenomena which permit
us to create materials with given properties and (or) dis-
tribution of grain boundaries is subsumed under GBE
as well. Strictly speaking, all processes which trans-
form the properties of materials due to a change in grain
boundary properties and distribution, in other words, in
grain microstructure—recovery, recrystallization and
especially grain growth—fall in this category. This is
our understanding of GBE. We will, in particular, con-
sider the latter, namely grain growth. Grain growth de-
fines the change of grain microstructure as a function of
internal parameters of the sample—chemical nature of
the matrix, material impurities, composition—and the
characteristics of the process—temperature, pressure,
duration of annealing. Finally, to generate the desired
grain microstructure is only half of the problem. The
next step is to retain, i.e. to stabilize the formed mi-
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crostructure. This issue is of especial importance for
fine grained and nanocrystalline materials.

2. “Equilibrium” grain size in the system
with impurity

It is common knowledge that grain boundaries are non-
equilibrium defects in crystalline solids. In other words,
there is no equilibrium grain size for a polycrystal. Ac-
tually, the free energy for a pure polycrystal can be
expressed as:

�G = �G(T ) + γ (T )S (1)

The first term on the right-hand side of (1) defines the
energy of the bulk of the polycrystal while the sec-
ond term constitutes the grain boundary energy, i.e.,
the product of grain boundary area S and grain bound-
ary surface tension γ . If γ > 0 there is no special grain
size for which relation (1) has a minimum (extremum).
This brings up the question: Is there an equilibrium
grain size in a system with impurities, in particular in a
binary system?

�G = �Gsol.(T, c2) + γ (T, c2)S (2)

Kirchheim [6] provided a positive answer to this ques-
tion. His consideration is based on classical J. W. Gibbs
approach where the properties of the bulk of the system,
the “reservoir”, are constant in the course of displace-
ment of atoms from the interface to the bulk and back.
Briefly the arguments of R. Kircheim can be expounded
in the following way. Transfering a small amount of
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impurity from the bulk solid solution to the interface
increase the free energy of the bulk solution and at the
same time decreases the free energy of the interface.
In other words the free energy of a system with an
interface might have an extremum. (It is desirable to
have a minimum). On the other hand the free energy
of a system without interface is obviously smaller than
with the interface. The question is whether the surface
tension of an interface can vanish during the impurity
adsorption. Kirchheim [6] reasones that such process is
possible.

3. Kinetic “Stabilization” of grain
microstructure

A thermodynamically stable grain size is unlikely even
in a system with impurities. Michels et al. [7] discussed
the feasibility to apply the Burke model [8] to the grain
growth in nanocrystals. The peculiarity of grain growth
in fine grained and nanocrystalline materials is that the
increase of the mean grain size and correspondingly, the
reduction of the total grain boundary area results in a
tangible redistribution of the impurities—the bulk con-
centration increases, and by doing so raising boundary
adsorption. The Burke model is based on the assump-
tion that the drag force is determined by a maximal
grain size R̄max. Grain growth ceases as R̄max is ap-
proached. Michels et al. [7] found that for fine grained
materials the difference of the impurity concentration
at the boundary and in the bulk changes linearly with re-
spect to the mean grain size. Then the maximum radius
R̄maxcan be extracted from the relation:

d R̄

dt
= mb

(
αγ

R̄
− f

)
(3)

where f is a drag force which is proportional to mean
grain size which, in turn, scales with the mentioned
difference of concentration in the bulk and at the grain
boundary: f = χ R̄, where χ is a constant. Hence the
limiting radius R̄max = ( α

χ
γ )1/2. Rabkin [9] called at-

tention to the fact that the authors of [7] did not take
into consideration the dependence of the drag force on
grain boundary velocity (grain growth). The latter de-
pendence was accounted for in all theories of impurity
drag on grain boundary motion [10]. In this case

f = χ ′ R̄
d R̄

dt
(4)

with χ ′ a new constant. Accordingly, there is no more
a limiting grain size R̄max.

This conclusion is doubtful, however, since the au-
thors of [7] used the Burke model in which the existence
of the limiting grain size was assumed from the outset
[8]. Burke believed that the reasons for dragging of
boundary motion are impurities, surface of the sample,
and second phase particles. In other words, the case
in point is the strong dragging of grain growth other
than complete termination of the process. Secondly,
Equation 4 is valid for R̄ ∼ �C = Cb − C2, where
Cb is the impurity concentration at grain boundary, C2

in the bulk, respectively. However, obviously this rela-
tion is valid for sufficiently small grain size only.

C2 = V0c0
2 − �2S

V0
(5)

where V0 is the volume of a sample, �2 is the value of
the impurity adsorption at grain boundaries, c0

2 is the
average impurity concentration in the sample. Just this
concentration should be used when the bulk free energy
of a solid solution is evaluated.

Since at least for not so large concentrations Cb =
BC2, B is an adsorption coefficient

Cb − C2 = (B − 1)
V0C0

2

V0 + 3
2 · δ

R̄
(B − 1)

= 2R(B − 1)V2C0
2

2R̄V0 + 3δ(B − 1)
(6)

Only for sufficiently small R̄, as mentioned in [7], Cb −
C2 ∼ R̄. In other words, both Equation 8 with R̄max,
used in [7], and Equation 9 [4] refer to a sufficiently
small grain size.

We think, it is of interest to consider also a situation
when the excess of impurity which is acquired due to
grain growth causes the formation of second phase par-
ticles, first of all at the grain boundaries. In this case at
some critical R̄ the concentration of impurities in the
sample exceeds the solubility limit, precipitation of the
second phase particles will start and grain growth will
be slowed down.

Rabkin [9] considered a situation where grain bound-
aries are saturated with impurities from the outset. In ac-
cordance with [9] the particles contain impurity atoms
only. These particles are randomly distributed along
the GB network and exert pinning force on the mov-
ing GB. Small particles are dragged along by migrating
grain boundaries by mechanisms of interfacial diffusion
while sufficiently large particles move together with
grain boundaries by the mechanism of bulk diffusion,
or they detach from the grain boundary [10, 11]. If all
particles nucleate at the beginning of grain growth, as
assumed in [9] and the accommodation of impurities
occurs exclusively by the growth of existing particles,
then the equation of joint motion of grain boundary and
particles reads:

d R̄

dt
= mb

(
α

γ

R̄
− f (r )n0

R̄

R̄0

)
(7)

where f (r ) = πrγ sin(2ϕ) is the interaction force be-
tween grain boundary and a particle, ϕ is the angle
between the tangent to the grain boundary at the point
contact and the normal to the direction of grain bound-
ary motion, n0 is the number of particles per unit area,
R̄0 is the initial grain size, r is the radius of the particle.
In [9] the joint motion of grain boundary and particles
was described by the equation:

d R̄

dt
= mp(r ) f (r ) (8)
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mp(r ) is the particle mobility. With Shewmon’s expres-
sion for mp(r ) [10]:

mp(r ) = 	a DSδ

kTr4 (9)

	a, DS, δ are the atomic volume, the interfacial diffu-
sion coefficient and the thickness of the interfacial layer
in which the diffusion occurs, respectively.

The system of Equations 7–9 together with the ex-
pression for the conservation of the impurity atoms de-
termines the behavior of the system considered. The
main result can be expressed as:

sin(2ϕ) = A

ς
·

1 − 1
ς

1 + Bς
(
1 − 1

ς

)4/3 (10)

where ς = R̄
R̄0

, A = 9kT c0mb

8n0π 2	a DS R̄0
, B = kT n0mb

	a DS
( 3c0

4πn0
)4/3 ·

δ, c0 is the impurity concentration in the saturated grain
boundary layer. It is the authors’ opinion that the value
of sin(2ϕ) is an indicator of the regime of grain bound-
ary motion. Namely, when sin(2ϕ) < 1 the grain bound-
ary moves together with the particles. In the range of
sin(2ϕ) > 1, the grain boundary detaches from the im-
purities. It is important to note that A in Equation 10
is inversely proportional to the initial grain size R̄0.
This means that after each detachment grain growth
will be described by the same set of equations but
with a smaller value of the parameter A. Rabkin [9]
states that neither impurity drag nor particle drag can
stop completely grain growth in a polycrystal, how-
ever they are able to essentially slow down this process.
Going along with this statement we would, neverthe-
less, like to stress that in [9] not the joint motion of
grain boundary and particles was considered but a dis-
sociation of grain boundary and particles. Actually, a
comprehensive theory of joint motion of grain bound-
ary and particles [11] showed that Equation 8 defines
the maximum interaction force between grain boundary
and particles, associated with the last moment of joint
motion.

4. Grain growth accelerated by precipitation
In this context we raise the question whether the forma-
tion of a second phase always slows down grain growth
in polycrystals, in particular in nanocrystals. Let us con-
sider an effect associated with grain boundary motion,
or, more correctly with grain growth in a solid solution
[12]. When the sample (polycrystal) is in a single phase
field grain boundary motion, or the rate of grain growth,
is described by the theories of impurity drag—Lücke-
Detert, Cahn, Lücke-Stüwe [10]. However, if we lower
the temperature by �T or change the concentration
by �c (Fig. 1) the system enters the two-phase field.
In spite of the apparent degradation of the conditions
for grain growth, the migration rate may be higher if
the drag effect of the second phase particles will be
smaller than the reduction of impurity drag, owing to
the depletion of the solid solution. Experimentally this
effect manifests itself in an apparent negative activa-

Figure 1 Eutectoid binary phase diagram.

tion energy or in an increase of the grain growth rate
with rising concentration. Obviously, this effect is only
feasible when special conditions are met. By decreas-
ing the temperature by �T we offset the system to
the two-phase field and the fraction Wp of the particles
with respect to the solid solution Wsol.sol. will be equal
to (Fig. 1):

Wp

Wsol.sol.
= c0 − cA

cB − c0
(11)

In the two-phase field the equilibrium concentration of
the solid solution will be c′

0 = cA (Fig. 1).
The requirement of accelerated growth demands

V (c′
0 = cA, particles) > V (c0) (12)

Two situations will be considered. The first one relates
to a system with large, immobile particles. In this case
the grain growth rate can be represented as:

V = mb[P − Pim(V ) − Pp] > mb[P − Pim(V )] (13)

where† P = αγ

R̄
is the driving force for grain growth,

Pim and Pp are drag forces due to solute atoms and
by immobile particles, respectively. To assess relation
(17) we will use the Zener [10] and Lücke-Detert [10]
approximations:

Pp = 3 f γ

r
(14)

Pim = �
V

Dim
kT (15)

where f is the volume fraction of the particles, �—
the adsorption at grain boundaries, Dim—bulk diffusion
coefficient of the impurity. For grain growth in a solid
solution we arrive at:

V = mb P

1 + �(c0) kT
Dim

mb
≈ Dim P

kT �(c0)
(16)

† Usually the radius of grain curvature during grain growth does not
agree with the mean grain size R̄ as accounted for the coefficient α,
which is different from 3/2. However, for sake of simplicity we assume
that α = 3

2 .
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and for grain growth in a solid solution with second-
phase particles we obtain:

V =
mb

[
P − 3 f γ

r

]
Dim

kT

�(c′
0 = cA)

(17)

An acceleration of grain growth caused by the forma-
tion of second-phase particles will fit the relation:

P − 3 f γ

r

�(c′
0 = ca)

>
P

�(c0)
(18)

The relation (22) is valid under the assumption that the
impurity diffusion coefficient is independent of concen-
tration. As the driving force for grain growth P = γ

R̄
,

and the Henry adsorption isotherm �(c) = Bc, the re-
lation (18) can be represented as:

1
2R̄

− f
r

cA
>

1

2R̄c0
(19)

The volume fraction of the particles f =
Wp	p

Wp	p+Wsol.sol.	sol.sol.
, where 	p and 	sol.sol. are the mo-

lar volumes of the second-phase particles and the solid
solution, respectively. For sake of simplicity we will
assume that 	p � 	sol.sol.. It is pointed out that strictly
speaking in the vicinity of the solubility limit the
isotherms which take into consideration the interaction
between species should be used [10, 13]. We only use
the Henry isotherm to make a rough estimate, i.e. to
establish the physical link between the parameters of
the problem.

Relations (11), (12), and (19) yield:

1 − 2R̄
r · c0−cA

cB−cA

cA
>

1

c0
(20)

or

2R̄

r
<

cB

c0
(20a)

The relations (20) and (20a) determine the condi-
tions under which the formation of the second-phase
particles accelerates grain growth in the alloy. As
mentioned previously, the relations (20) and (20a) are
derived under the assumption that the second-phase
particles are immobile. One can see that the larger r
(radius of a particle) and the smaller the mean grain
size R̄ the more accurate the mentioned relations. For
cB ∼ 1, c0 ∼ 10−3, cA ∼ 10−4 the relation 20(a) yields
2R̄
r < 103.

However, the phenomenon discussed might be ob-
served as well in the case when the particles are mov-
ing together with the grain boundary, in other words,
for small, mobile particles. As noted above, the theory
of grain boundary motion dragged by mobile particles
was developed in [10, 11].

The physical reason for particle dragging is an at-
tractive force between grain boundary and particle (so-
called Zener force and its variants [10]). As shown in
[11] the velocity of joint motion of a grain boundary
and the particles reads:

V = Pmb

1 + ∑
i ni

mb

mp(ri)

(21)

where ni and mp(ri) are the number of particles with
radius ri per unit area and the mobility of particles with
radius ri.

For a continuous size distribution of particles n̄(r )
we obtain

V = Pmb

1 + ∫ ∞
0

n̄(r )mb

mp(r ) dr
(22)

where mp(r ) is the mobility of a particles with the size
rand the total number of particles per unit area n

n =
∫ ∞

0
n̄(r ) dr (23)

The border between free grain boundary motion and
the joint motion of a grain boundary and the particles
is established by dimensionless criterion ρ:

ρ =
∫ ∞

0

n̄(r )mb

mp(r )
dr (24)

If ρ � 1 then V ∼= mb P and the grain boundary ve-
locity is determined by the mobility of the boundary.
If ρ 	 1 grain boundary motion is determined by the
mobility of the particles and their distribution function:

V ∼= P∫ ∞
0

n̄(r )
mp(r ) dr

(25)

or in the simple case of a single size distribution:

n̄(r ) = n0δ(r − r0) (26a)

V = Pmp(r0)

n0
(26b)

ρ = n0mb

mp(r0)
(26c)

where n(r0) is the number of particles of size r0 per unit
area.

The particle mobility is determined by it size and
mass transport mechanism. If mass transport is con-
ducted through the bulk of a particle, mp(r ) ∼ 1

r 3 ,
if it is operated by interfacial diffusion, mp(r ) ∼ 1

r 4

[10]. In the case, when a particle moves by interfa-
cial diffusion (Ds) transfer, ist mobility is defined by
Equation 9.

With the formation of second-phase particles the con-
centration of the solute solution is reduced while the
inherent grain boundary mobility and grain boundary
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surface tension increase correspondingly. The surface
tension increases in such a process only very moder-
ately. So, the condition of grain growth acceleration
can be written (in the case of a single size distribution
with the radius r0) as:

V = Pmp(r0)

n0
> V (c0) (27)

The volume fraction f of the particles is given by the
expression:

f = Wp	p

Wp	p + Wsol.sol.	sol.sol.
= c0 − cA

cB − cA
(28)

On the other hand, f = 4
3πr3

0 N , where N is the number
of particles per unit volume of the system and

N = 3

4πr3
0

· c0 − cA

cB − cA
(29)

It follows that

n0 = 2r0 N = 3

2πr2
0

· c0 − cA

cB − cA
(30)

From (9) and (27)–(30) we arrive at the condition
for grain growth acceleration due to evolving mobile
second-phase particles:

r2
0 < 	aδ�(c0)

DS

Dim
· cB − cA

c0 − cA
(31)

We remind that the concentration dependence of
grain boundary velocity (or grain growth rate)
was estimated in the Lücke-Detert approximation.
For

DS ≈ 10−10 m2s−1, Dim ≈ 10−14 m2 · s−1,

	a ≈ 10−5 m3 · mol−1,

�(c0) ≈ 10−5 mol · m−2, δ ≈ 10−9 m,

cB ≈ 1, cA ≈ 10−4, c0 � 10−3

we obtain r0 < 10−6 m.
Grain boundary motion together with the particles is

bound to have a point of a detachment. As mentioned
above the limiting velocity of grain boundary motion
together with the particles is described by Equation 12
while the detachment condition can be represented
as:

f (r0)mp(r0) < V (cA) (32)

or, using for f (r ) the relation derived in [14] f (r0) =
3
2πγbr0 and for mp(r0) Equation 9:

r3
0

R̄
> δ	a�(cA)

DS

Dim
(33)

One can see that for the values of the parameters given
above the relation (33) is obeyed for

r3
0

R̄
> 10−15 m2, for instance, by r0 > 10−7 m and

R̄ < 10−6 m.

Consequently, the predicted effect can be observed
in systems with mobile and immobile particles. From
Equations 20 and 20a follows that in samples with im-
mobile particles systems with low solute solubility (cA
and c0 are small) and rather small mean grain size R̄ are
more amenable to observe the effect, while for mobile
particles the main condition relates to the size of the
particles: they must be sufficiently small.

Evidently, the necessary conditions to discover the
effect of Particle Accelerated Grain Boundary Migra-
tion or Particle Accelerated Grain Growth—are not so
tough. The determination of such conditions is one main
goal of GBE.

An important parameter of the Equations 20–33 is
the size r of the precipitates. It relates to the solution of
a classical problem—the size of an equilibrium nucleus
in a solid. Consequently, the change of free energy of
the system due to precipitation is considered as the sum
of:

1. Bulk free energy �Gbulk: 4
3πr3(g2 − g1) where g1

and g2 are the free energy per unit volume for matrix
and new phase respectively. For g2 < g1 this term is
negative.

2. Surface free energy of the nuclei �Gsurf: 4πr2γint
(γint is the surface tension between the nucleus and ma-
trix phase). This term is positive.

3. The elastic free energy (�Gel) which results from
the difference in atomic volume of the phases. This term
is positive.

However the formation of equilibrium nuclei requires
an equilibrium over all parameters, including the va-
cancy concentration. In other words, in the volume
where a spherical (for the sake of simplicity) nuclei is
formed the initial concentration of vacancies ceq should
be changed to the value ceq exp( γint	a

rkT ), in accord with
the Gibbs-Thomson equation. This, in turn, implies a
change of the free energy of the system:

�G ′
vac = 1

2
· NkT

ceq
matrix

[
ceq

matrix − ceq
matrix exp

(
γint	a

rkT

)]2

· V ′

(34)

where ceq
matrix is the equilibrium vacancy concentration

in the matrix phase, V ′ is the volume per nucleus.
The vacancy concentration in a spherical nucleus

must be lower than the vacancy concentration in an in-
finite bulk. However, all phase diagrams relate to equi-
librium with a flat surface. By this is meant that defining
the free energy of the nuclei we should either take into
account a curvature dependence of g2, or to add the
term which takes into consideration the vacancy free
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energy of a nucleus with the curved surface:

�G ′′
vac = 1

2
· NkT

ceq
nuc

[
ceq

nuc exp

(
−γint	a

rkT

)
− ceq

nuc

]2

×4

3
πr3 (35)

ceq
nuc is the equilibrium vacancy concentration in the nu-

cleus phase with a flat surface. The critical radius of a
nucleus can be defined from an equation which takes
into consideration all mentioned terms:

d�G

dr
= d

dr
�(�Gbulk, �G int, �Gel, �Gvac) = 0

(36)

Accounting for the vacancy contribution to the nucleus
free energy Equations 38 and 39 increases the size of
equilibrium nucleus. This is understandable: both con-
tributions given by the mentioned equations increase
the value of g2, i.e. reduce the gain in free energy due
to the nucleus formation.

It is natural to expect that elastic stresses appear
during a first order phase transition. The question is
whether it is necessary to take into account this effect
in thermodynamic consideration. Are elastic stresses
compatible with the thermodynamic equilibrium of a
system? A system left to its own devices will find a
way to eliminate the elastic stresses—up-hill diffusion,
Nabarro-Herring and Coble creep. In this sense the
stresses in a crystal are incompatible with complete
equilibrium. However, at low temperatures the rate of
relaxation processes, diffusion for instance, is rather
small, and the term �Gel should be included in the free
energy of nucleus formation.

5. Kinetics of grain growth inhibited
by vacancy generation

Even a crystal of a pure element has its intrinsic
impurities—the vacancies. It is a rather elaborate prob-
lem to account for the effect of vacancies on the pro-
cesses in solids. Vacancies do not only influence the
kinetics of the processes in solids but the thermody-
namics as well. The point is that the excess of grain
boundary free volume produced by the reduction of to-
tal area of grain boundaries (the density of grain bound-
aries is smaller than the density of an ideal crystal) can
be considered as a flux of vacancies into the bulk of a
sample, as a source of elastic stresses, as a source of
plastic deformation. However, in principle the approach
which considers the elimination of volume excess by
the vacancies is most constructive. Actually, the way
to reduce the excess through elastic stresses is a dead-
lock. The relaxation of elastic stresses is a long term
and slow process, that is why in a short time the re-
duction of grain boundary area will result in a strong
increase of free energy. Moreover, as mentioned above,
the relaxation of elastic stresses occurs by a directed
flux of vacancies. The inhibiting effect of vacancies on
the very process in which they are generated is consid-

ered from a thermodynamic viewpoint in [15–19]. It
is very common in materials science that vacancies are
generated as a by-product of a kinetic process. Vacancy
production by moving jogs on dislocations during plas-
tic deformation, by a progressing solid/liquid interface
in solidification, or, generally, in every first order phase
transition, or by shrinking voids in sintering, or, finally,
during grain growth due to the different density of grain
boundary and the ideal crystal [20–22], are but a few
examples. The excess free volume the system has to get
rid of in such kinetic processes is released as vacancies
which have to be accommodated by the crystal bulk. A
vacancy is an “impurity atom” which is solved in any
crystal, and the distinctive property of which (compar-
ing with ordinary impurities) is that a vacancy is born
from vacuum and disappears in vacuum, i.e. there is no
conservation rule. Other than that the properties of va-
cancies are similar to usual impurities: creating a solu-
tion even in absolutely pure crystals vacancies decrease
its free energy; if the vacancy concentration exceeds
the solubility limit—the equilibrium concentration of
vacancies ceq—they try to leave the crystal or to precip-
itate as second-phase particles—i.e. voids. The kinetic
aspect of vacancy influence on grain growth was con-
sidered yet [23, 24]. In [19, 22] it was shown that in the
course of grain growth a self-dragging by the fission
product of grain boundaries can be observed.

In most general terms, the Gibbs free energy G of a
system with vacancies can be written as

G = Gnon-vac + Gvac (37)

where Gnon-vac is the non-vacancy part of the Gibbs free
energy and Gvac is the contribution due to vacancies.
Obviously small deviations of the vacancy concentra-
tion c from its equilibrium value ceq should increase the
last term in (37) irrespectively of a sign of the difference
c − ceq:

Gvac = 1

2

NkT

ceq
(c − ceq)2 (38)

Here N is the number of atomic sites per unit volume.
The grain growth process is driven by the tendency

of the system of grain boundaries to reduce the total
grain boundary energy (grain boundary area if all grain
boundaries are assumed to be equal in their propreties
( uniform grain boundary model).

As a ‘by-product’ of this process, vacancies are re-
leased into the crystal bulk. Indeed, according to the
present views the density of a grain boundary is lower
than that of the bulk. The excess free volume released
during the reduction of the grain boundary ‘phase’
has to be accommodated by the bulk. This assump-
tion is supported by recent computer simulations of
grain boundary motion [22]. The supply of vacancies
by moving grain boundaries may produce a vacancy
supersaturation in the bulk rising the Gibbs free energy
and producing a thermodynamic force on the boundary.
As can be expected intuitively, particularly by analogy
with the Le Chatelier principle, this thermodynamic
force will resist grain boundary migration. Under cer-
tain conditions considered in [15–17], this effect may
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be as strong as to temporarily suppress grain growth
altogether. In the approach proposed uninhibited grain
growth was cosidered to occur only during a limited
time t∗ Equation 39. It was assumed that after that time,
on reaching the condition when the time derivative of
the free energy of the system becomes positive, “lock-
ing” of grain growth occurs:

t ≥ t∗ = 1

24
· γ ceq R2

NkT (βδ)2V
(39)

Here V is the “unperturbed” rate of grain growth driven
by the boundary energy; γ, δ, β and m are grain bound-
ary characteristics: free energy per unit area, thickness,
the relative excess free volume, and mobility, respec-
tively; R̄ is the average grain size (radius), DSD is the
bulk self-diffusion coefficient, N is the number of atoms
per unit volume and Z is the coordination number;
kT has its usual meaning. Under the assumpion that
t∗ � τ = d2/Dv the expression for the effective ve-
locity of grain growth Veff can be written as

Veff = t∗

τ
V = 1

24
· γ DSD

NkT Z (βδ)2
(40)

Smoothing the discontinuous solution by replacing Veff
with the time derivative of the average grain size, dR/dt,
and solving Equation 39 yields the time law for the grain
growth model of [15, 17]:

1

R̄0
− 1

R̄
= 1

24
· γ DSDt

NkT Z (δβ)2d2
(41)

where R̄0 is the initial grain size.
The model picture outlined above appears to account

for the inhibiting effect of vacancies on grain growth,
but, of course, it is not more than an approximation of
the real continuous process of grain growth. Guided by
the principle that natura non facit saltus, the authors of
[18, 19] suggested a description of grain growth as a
continuous process.

An equation expressing the balance of energy asso-
ciated with an increment of grain size, dR within a time

Figure 2 Dependence of non-dimensional grain size (a) and of excess vacancy concentration (b) on the non-dimensional time calculated from
Equations 44 and 45 for the following values of parameters: A = 10, � = 100 and p = 100 [18].

increment dt can be written as:

− d

d R̄

(
3γ

2R̄

)
d R̄ = 3

2
· 1

R̄

(d R̄/dt)2

mb
dt

+ NkT

ceq
(c − ceq)

6βδ

R̄2
d R̄ (42)

Left hand side of (42) is distributed between the dis-
sipation due to the drag forces (first term in the right
hand side of Equation 42 and the vacancy sub-system
(second term in the right hand side of Equation 42. The
variation of the vacancy concentration is given by

ċ = 6βδ

R̄2
· d R̄

dt
− Dv

d2
(c − ceq) (43)

Here d and Dv are the average spacing between vacancy
sinks and the vacancy iffusivity correspondingly. The
ratio d2

Dv
determines the characteristic vacancy annihila-

tion time. Equations 42 and 43 give us a full description
of the evolution of the grain system in terms of the av-
erage grain radius and the vacancy concentration and
in a dimensionless form they can be re-written as:

ξ
dξ

dt
+ A�C − A = 0 (44)

dC

dt
= p

ξ 2

dξ

dt
− C (45)

Here ξ = R̄/d, C = c − ceq, A = mbγ /Dv, � =
4NkT (δβ)

ceqγ
, p = 6β δ

d ; the time t is now non-dimensional

and is measured in the units of d2/Dv.
Numerical solutions of the above set of equations for

a broad range of parameters has shown that for suf-
ficiently small initial grain size ξ0 = R0/d the grain
growth uninhibited by vacancies is preceded by an in-
cubation time during which the growth rate is substan-
tially reduced, the time dependence of the grain size ex-
hibiting a plateau-like behaviour, cf. Fig. 2a. For large
values of ξ0 no incubation time is observed. The incuba-
tion time is defined as the time at which the grain growth
rate is a maximum. This time corresponds to the termi-
nation of the plateau-like behaviour and a transition to
uninhibited, parabolic grain growth, cf. Fig. 2a. Over
the incubation time, the vacancy concentration stays at
an approximately constant, increased level, cf. Fig. 2b.
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Numerical results show that the non-dimensional incu-
bation time is inversely proportional to ξ0 and can be
represented by the following formula:

τincubation = p�

ξo
(46)

or, in dimensional form:

tincubation = 24
NkT (βδd)2

γ R̄0 DSD
(47)

where DSD is the bulk self-diffusion coefficient.
For times larger than the incubation time, a common

parabolic grain growth law follows, while within the
incubation time an approximate analytical solution of
the set of Equations 46 and 47 reads:

C = 1/� (48)

1

ξo
− 1

ξ
= t

p�
(49)

which, being rewritten in the dimensional form, reads:

1

R̄0
− 1

R̄
= 1

24
· γ DSDt

NkT (βδ)2d2
(50)

This demonstrates that the approximation [15, 16]
based on the intermittent locking-unlocking scheme
with smoothing, provides a quantitatively adequate rep-
resentation of continuous grain growth in the regime
where the inhibiting effect of grain growth induced va-
cancies is operative. Indeed, Fig. 2 demonstrates an ex-
cellent match between the ξ (t) dependencies over the
incubation period given by Equations 49 and 50.

The condition for the occurrence of the vacancy-
induced stabilization against grain growth can be ex-
tracted from a comparison of the inhibited grain growth
with the common, parabolic grain growth. Actually,
parabolic growth occurs if the vacancy effect can be ne-
glected, i.e. if the vacancy concentration is sufficiently
close to its equilibrium value. From Equation 44 it then
follows

ξ 2 − ξ 2
o = 2At (51)

Obviously, the solution of the set of Equations 44 and
45 coincides with the parabolic law given by Equation
51 for time tensing to zero and also for times much
larger than the incubation time, when C tends to zero,
cf. Fig. 2. A real inhibition of grain growth means that
the rate of growth in the plateau region, described by
Equation 49, is much smaller than that corresponding
to ‘free’, uninhibited growth described by Equation 51.
This condition reads

ξ � (Ap�)1/3 (52)

or in the dimensional form:

R̄0 � R̄∗
c =

[
24NkT Z (δβ)2d2 mb

DSD

]1/3

(53)

One can see that this condition is not very material sen-
sitive, particularly due to the fact that the ratio of the
grain boundary mobility and the coefficient of bulk self-
diffusion is not strongly material dependent, and also
due to the power of 1/3. One possible source of struc-
tural dependence is the sink spacing d,for example if it
is related to the inverse of the square root of the dislo-
cation density may bring about some variability of the
quantity on the right hand-side of inequality (Equation
53).

One particular case needs to be considered separately,
though. It is the case when the initial grain size is so
small that no other vacancy sinks but the grain bound-
aries themselves are available, so that d is to be iden-
tified with the grain size R̄. Equation 50 then changes
to

dC

dt
= 1

ξ 2

(
6

dξ

dt
− C

)
(54)

Equation 49 remains unchanged. However, the mean-
ing of the non-dimensional grain size and the non-
dimensional time are different now: ξ = R̄/(δβ), and
time is measured in units of (δβ)2/Dv.

Solving the set of Equations 49 and 54 numerically,
one can see that the temporal behaviour of the grain
size in this case is different from the behaviour in the
case of constant sink spacing d. After a short initial pe-
riod of time ttrans the rate of vacancy-inhibited growth
slows down considerably (Fig. 3a). After that, the grain
growth effectively stays inhibited for very long times.
The growth rate is thus always lower than the respec-
tive rate of usual parabolic growth (Fig. 3b). Again,
using the fact that after the transient period ttrans the
vacancy concentration is sustained at an approximately
constant level and that the grain size does not change
significantly, we arrive at an approximate solution of
the set of Equations 49 and 54 which reads

R̄ − R̄0 = 1

24
· γ DSDt

NkT Z (δβ)2
(55)

From Fig. 3b one can see that Equation 54 provides
indeed a good analytical approximation for sufficiently
short times, which neverthekess should be longer than
ttrans.

The stability condition of nanocrystalline material
against grain growth can be expressed by the inequality

R̄0 � R̄c = 24NkT Z (δβ)2 mb

DSD
(56)

These results have an interesting interpretation: a
nanocrystalline material cannot be stable if condition
(56) or (53) (whichever is relevant) is violated. In that
sense, the critical radius R̄c or R̄∗

c can be regarded as a
limiting stable grain size above which grain growth un-
inhibited by vacancies is possible. Obviously, as seen
from (53) and (56) the critical grain size is temper-
ature dependent. As the activation energies for grain
boundary mobility and the self-diffusion are generally
different [10], the sense of the temperature variation of
the critical grain size will depend on the interplay of
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Figure 3 Dependence of non-dimensional grain size on the non-dimensional time calculated from Equations 44 and 54 for the following values of
parameters: A = 10, � = 100 for two different time scales [18].

the temperature dependencies of the mobility and the
self-diffusion coefficient. It should be stressed that the
grain boundary mobility may depend very strongly on
the type of the boundary, the texture in the material and
its purity [10], which makes estimation of the critical
radius to a fairly difficult task. In [18] such an estima-
tion was done for Al—the only material for which m
is known with some confidence—at 300◦C one obtains
both R̄c and R̄∗

c = (R̄cd2)1/3of the order of 100 nm.
These estimates can, from our viewpoint, explain the
relative stability of nanocrystalline materials against
grain growth.

The results of the described approach were compared
with grain growth experiments in nanocrystalline Fe
[25]. As intimated by the authors of [25] the theory de-
veloped is able to account for the growth-rate discrep-
ancy between nanocrystalline and microcrystalline Fe
without recourse to impurity effects.

In the following we discuss aspects of the present
kinetic description of the interaction between the pro-
cess of grain growth and the evolution of the vacancy
sub-system. The set of Equations 49 and 50, or 49 and
54, admits solutions corresponding to a decrease of the
average grain size for the case of an initial vacancy
supersaturation. In other words, it can be speculated
that grain refinement can be induced by high vacancy
concentration, which can be created in different ways,
e.g. by quenching from a high temperature, irradiation
with energetic particles or plastic deformation. An ex-
ample of the computed variation of the average grain
size with time for three different initial excess vacancy
concentrations is shown in Fig. 4. While the amount
of grain size decrease is small, the very possibility of
vacancy-induced grain refinement appears interesting.

The physical reason for this grain refinement is simi-
lar to the well known effect of grain refinement dur-
ing discontinuous precipitation (DP) [26], diffusion
induced grain boundary migration (DIGM) [27] and
discontinuous ordering (DO) [28] reactions. In all cases
the loss of energy associated with an increase of grain
boundary area is compensated for by the energy gain
in the bulk due to decomposition of supersaturated so-
lution (DP), formation of the solid solution (DIGM) or
bulk ordering of the quenched disordered alloy (DO)
behind moving grain boundaries.

Figure 4 Dependence of non-dimensional grain size on the non-
dimensional time calculated from Equations 44 and 45 for various levels
of initial vacancy supersaturation. (Parameter values are the same as in
Fig. 2) [18].

The discussed approach was applied to grain growth
in thin films, one of the most important subjects of
modern high technologies. Grain growth in thin films
has some distinctive properties, which are mainly con-
nected with the stresses developing in thin films and
with a strong influence of the free surface on grain
boundary motion [29, 30]. The consideration of the first
feature dates back to Chaudhari [31]. First, the cohesion
between a film and a substrate should lead to internal
stresses in the film. Second, under certain conditions,
an equilibrium grain size can exist beyond which no
grain growth occurs. This latter result followed from a
consideration of an interplay between the elastic strain
energy and the total grain boundary energy during grain
growth. The model proposed by Chaudhari appears to
be commonly accepted, see, e.g., a recent review [32].
In that approach, it was tacitly assumed that the ex-
cess free volume of grain boundaries released during
grain growth disappears instantly, giving rise to a tensile
stress. This strong assumption limits the applicability
of the model, as the free volume release would normally
occur via generation of lattice defects, notably the in-
jection of vacancies into the bulk of the material [22].

In accordance with [31] the stress in thin film is given
by

σ = E

(1 − ν)

{
1

2
βδ

(
1

R0
− 1

R

)
− α(c − ceq)

}
(57)
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Here E/(1−ν) is the biaxial elastic modulus expressed
in terms of Young’s modulus E and Poisson’s ratio ν.

As it was mentioned above, Chaudhari’s approxima-
tion presumes that the excess volume disappears instan-
teneously, while in our approach part of it is contained
in the vacancies. In this case the resulting stress can be
expressed by

σ = E

2(1 − ν)

{
βδ

(
1

R0
− 1

R

)
− (c − ceq)

}
(58)

Consider the derivative of the full Gibbs free energy,
G = Gs + GGB + Gvac, with respect to the average
grain size R:

dG

d R
=

[
NkT

ceq
(c − ceq) − σ

2

]
· dc

d R
+

{
1

4

E

1 − ν
βδ

×
[
βδ

(
1

R0
− 1

R

)
− (c − ceq)

]
− γ

}
1

R2

(59)

The behaviour of the system can be diagnosed by an
analysis of the sign of this derivative. The thermody-
namic viability of the grain growth process requires that
the derivative be negative.

The evolution of the vacancy concentration with time
t is given by

dc

dt
= βδ

R2
V − Dv

d2
(c − ceq) (60)

The first term on the right-hand side represents the rate
of vacancy generation accompanying grain growth (V
being the grain growth rate, or the velocity of grain
boundary migration). The second term describes the
vacancy removal by diffusion to the film surface, Dv
being the vacancy diffusivity an d the film thickness.

Two essentially different situations of grain growth
in thin films can be considered.

When vacancy removal can be neglected (which can
be referred to as the ‘adiabatic’ case) σ = 0 and the
last term in (60) can be dropped leading to

dc

d R̄
= βδ

R̄2
(61)

Equation 59 then assumes the form

dG

d R̄
= 1

R̄2

{
−γ + (βδ)2 NkT

ceq

(
1

R̄0
− 1

R̄

)}
(62)

It is seen that in the early stages of grain growth, when R̄
is close to R̄0, the derivative dG/d R̄ is negative, mean-
ing that the process is favourable thermodynamically.
However, at a certain critical value of R̄ given by

R̄0 = R̄0

1 − γ ceq R̄0

(βδ)2 NkT

(63)

the derivative dG/d R̄ vanishes. This critical value of R
can be seen as an ‘equilibrium’ grain size beyond which

no growth will occur. Obviously, such a critical grain
size is only possible if the denominator of Equation 63
is positive, i.e. if

R̄0 <
(βδ)2 NkT

γ ceq
(64)

A simple estimate using representative values of the
parameters,

δ = 10−9 m, β = 2 · 10−2, γ = 1 J · m−2,

T = 500 K, ceq = 10−8,

shows that this condition is fulfilled for R̄0 < 1.5 ·
10−5 m. Of course, this value is strongly temperature
dependent, primarily through the thermal equilibrium
vacancy concentration. If inequality (64) is not fulfilled,
grain growth will be unrestricted.

The second situation, which can be called as the
‘Chaudhari’ Approximation [31], also follows from
Equations 60 and 61. Indeed, assuming the existence
of such a critical radius and thus setting V to zero and
further assuming that the vacancy concentration is equal
to its thermal equilibrium value (a tacit assumption in
Chaudhari’s paper [31]) we find that

dG/d R̄ = 0 if

R̄ ∼= R̄0

1 − 4γ R̄0(1−ν)
E(βδ)2

(65)

This formula reproduces Chaudhari’s result [31], which
was recently revisited by Thompson and Carel [32].

The modified energy balance equation reads:

γ

R̄2

d R̄

dt
= (1 − ν)

σ

E

dσ

dt

+ NkT

ceq
(c − ceq)

βδ

R̄2

d R̄

dt
+ V 2

m R̄
(66)

The set of Equations 66 and 61, with σ given by Equa-
tion 57, provide a full description of the time evolution
of the grain size, vacancy concentration and stress. The
numerical solution manifests the features very similar
to those for the bulk and shows that—despite the two
factors inhibiting grain growth, viz. the development of
elastic strain and of vacancy supersaturation accompa-
nying the loss of grain boundary area—grain growth
occurs at all conditions. In other words, there is no crit-
ical initial grain radius R̄0 below which grain growth
would be limited, contrary to the prediction in [31].
However, in a range of parameters of practical impor-
tance, the temporal behaviour of a polycrystalline thin
film may exhibit an incubation period during which the
grain size changes by only a small fraction of its initial
value. It is in that sense that one can refer to the incuba-
tion time as a period of stability of grain structure. The
magnitude of the incubation time is given by Equation
67 which provides a tool for assessing the period of
stability of a thin film of a given thickness against grain
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growth for a temperature of interest.

t∗
incubation = (βδ)2 NkT

γ R̄0
· d2

DSDceq
(67)

This makes it possible to clearly identify the incuba-
tion time. Its significance can be interpreted as follows.
Even though grain growth does occur during the incu-
bation time, the magnitude of the grain size does not
change substantially. For all practical purposes once
can thus consider tincubation as the time of relative stabil-
ity of the grain structure. Knowing the dependence of
tincubation on the initial grain size, temperature and film
thickness, one can assess this time for a system of in-
terest. An interesting feature of the incubation period is
that, in addition to the relative stability of grain struc-
ture, stability of the vacancy concentration at a high
level (c ∼= NkTβδ

ceqγ
) is maintained.

Finally, we note that the Chaudhari case [31] can
be construed if a fairly artificial condition is used that
the vacancy concentration c is identical to the thermal
equilibrium value ceq. What is more, even in a “pure“
Chaudhari model there is no complete freeze of grain
growth: the elastic stresses generated in the course of
grain growth of the thin film generate vacancy fluxes to
reduce the stresses, what is very similar to the situations
described by Nabarro-Herring and Coble.

From the results considered above it may be deduced
that the redistribution of the excess volume in the form
of vacancies generated in the course of grain growth sta-
bilizes grain microstructure against coarsening. Some
theoretical predictions were confirmed experimentally
[25], however much more experimental work is needed
to clear up features of the self-inhibited grain growth.

6. Grain boundary triple junctions and their
role in grain microstructure evolution

A distinctive property of fine grained and nanocrys-
talline materials along with the high density of grain
boundaries, particles and characteristic behavior of im-
purities is the extremely high concentration of grain
boundary triple junctions. We reason that it is timely to
consider the grain growth in fine grained and nanocrys-
talline materials also with regard to grain boundary
triple junctions besides the traditional elements of the
process—the grain boundaries.

Although the number of triple junctions in polycrys-
tals is comparable in magnitude with the number of
boundaries, all peculiarities in the behaviour of poly-
crystals during grain growth were solely attributed to
the motion of grain boundaries so far. It was tacitly as-
sumed in theoretical approaches, computer simulations
and interpretation of experimental results that triple
junctions do not disturb grain boundary motion and
that their role in grain growth is reduced to preserve
the thermodynamically prescribed equilibrium angles
at the lines (or the points for 2D systems) where bound-
aries meet. The most prominent example of how this as-
sumption determines the fundamental concepts of grain
structure evolution gives the Von Neumann-Mullins re-
lation, which defines the rate of change of the grain area

in the course of grain growth. No doubt this relation
forms the basis for practically all theoretical and exper-
imental investigations as well as computer simulations
of microstructure evolution in 2D polycrystals in the
course of grain growth [33–36]. This relation is based
on three fundamental assumptions, namely:

1. all grain boundaries possess equal mobilities (mb)
and surface tensions (γ ) irrespective of their misori-
entation and the crystallographic orientations of the
boundaries;

2. the mobility of a grain boundary is independent
of its velocity;

3. the triple junctions do not affect grain boundary
motion; therefore, the contact angles at triple junctions
are always in equilibrium and, due to the first assump-
tion, are equal to 120◦ [37, 38].

Let us consider a 2D grain with an area S (Fig. 5).
In the time interval dt all points on the grain bound-
aries of the considered grain will displace normal to
the grain boundaries by the amount Vdt, where V is the
grain boundary migration rate. Accordingly, the rate of
change of the grain area S can be expressed by

d S

dt
= −

∮
V dl (68)

where dl is an element of the grain perimeter. For grain
growth

V = γ mb K ≡ Ab K (69)

where mb is the grain boundary mobility, γ is the grain
boundary surface tension, K is the local curvature of
the grain boundary

K = dϕ

dl
(70)

where ϕ is the tangential angle at any given point of the
grain boundary.

From from Equations 68–70 follows

d S

dt
= −Ab

∮
dϕ (71)

Figure 5 Definition of parameters for the effect of triple junctions for a
calculation of the rate of grain area change.
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Figure 6 Configuration of grain boundaries at a triple junction during
steady state motion for n < 6 [10, 41].

If the grain were bordered by a smooth line, the integral
in Equation 71 would equal 2π . However, owing to the
discontinuous angular change at every triple junction,
the angular interval �ϕ = π/3 is subtracted from the
total value 2π for each triple junction. Consequently

d S

dt
= −Ab

(
2π − nπ

3

)
= Abπ

3
(n − 6) (72)

where n is the number of triple junctions for each re-
spective grain, i.e. the topological class of the grain.
Thus, the rate of area change is independent of the
shape of the boundaries and determined by the topo-
logical class n only. Grains with n > 6 will grow and
those with n < 6 will disappear.

While the first assumption of the derivation agrees
with the so-called uniform boundary model, and there
is an intuitive feeling that such a grain boundary can
be realized, at least, in a “Gedankenexperiment”, and
the second assumption fits the principles of the abso-
lute reaction rate theory, the third hypothesis should be
checked experimentally.

This brings up the question: How to measure the
triple junction mobility? There are two possible ways
to measure the triple junction mobility. Similar to grain
boundaries, reliable data of triple junction mobility can
be obtained only in the course of steady-state motion.
However a steady-state motion of a grain boundary sys-
tem with a triple junction is only possible in a very
small set of geometrical configurations. Two of them
are shown in Figs 6 and 7 [10, 39, 40].

These special boundary systems were investigated in
[10, 39, 40] under three main assumptions. Two of them
comply with the assumptions (1) and (2) of the Von
Neumann-Mullins consideration, while the third one is
determined by Equation 69: the normal grain boundary
displacement rate v is proportional to the grain bound-

Figure 7 Configuration of grain boundaries at a triple junction during steady state motion for n > 6 [39].

ary curvature K. As shown in [39, 40], the model grain
boundary systems (Figs 6 and 7) can move steadily, and
the analysis of their motion permits us to understand the
influence of the finite mobility of a triple junction on
the migration of grain boundaries.

An important relation which links the steady-state
value of the angle θ at the vertex of a triple junction
with the dimensionless criterion � = mTja/mb for the
configuration represented in Fig. 6 was derived [10, 39]:

2�

2 cos � − 1
= mTja

mb
= � (73)

If a triple junction is mobile and does not drag grain
boundary motion, the criterion � 	 1 and θ = π/3 i.e.
the equilibrium angular value at a triple junction in the
uniform grain boundary model. In contrast, however,
when the mobility of the triple junction is relatively
low (strictly speaking, when �Tja � mb) then θ → 0
(Fig. 8).

As can be seen from Fig. 6, the model configuration
correlates to grains in a polycrystal with less than 6
neighbours (adjacent grains), in other words, the topo-
logical class of the grain is smaller than 6. The steady
state motion of this system can be described by the
same system of equations, as the previous one, only
with different boundary and initial conditions [39].

The steady state motion of grain boundary config-
uration outlined in Fig. 7 corresponds to grains with
topological class greater than 6 [39, 40]. The criterion
�, which describes the influence of the triple junction
mobility on grain boundary migration now is defined
by

− ln sin �

1 − 2 cos �
= mTj x0

mb
= � (74)

Obviously, for � 	 1 	 1, when the boundary mobility
determines the kinetics of the system the angle θ tends
to its equilibrium value (π /3).

Again, the angle θ changes when a low mobility of
the triple junction starts to drag the motion of the bound-
ary system. However, as can be seen from Equation 78
and Fig. 6, in this case the steady state value of the angle
θ increases as compared to the equilibrium state. (Oth-
erwise the triple junction would move in the negative
direction of the x-axis, increasing the free energy of the
system.)

For � � 1 � 1 the angle θ (Equation 74) tends to
approach π /2. The dependency � = �(θ ) for both n <

6 and n > 6 are shown in Fig. 8.
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Figure 8 Angle θ as a function of �. (a) for n < 6, Equation 77; (b) for
n > 6, Equation 78 [39].

Figure 9 Evolution of the shape of a grain boundary system with triple
junction in Zn tricrystals with increasing temperature [41].

It should be stressed that the angle θ is strictly defined
by the dimensionless criterion �, which, in turn, is a
function of not only the ratio of triple junction and grain
boundary mobility, but of the grain size as well.

Experimental investigations were carried out for the
grain boundary configuration shown in Fig. 6 in spe-
cially grown tricrystals of Al and Zn [41, 42]. The
motion of different triple junctions formed by high-
angle and low-angle boundaries were investigated in
the temperature range between 300◦C and 410◦C (Zn)
and 400–600◦C (Al). The shape of the moving grain
boundary system was similar to the shape predicted
by the theory [41]. In particular, it was demonstrated
that the vertex angle θ at the triple junction can devi-
ate distinctly from the equilibrium value, when a low
mobility of the triple junction hinders the motion of
the grain boundaries (Fig. 9). In fact, a transition from

Figure 10 Temperature dependence of the criterion � (a) and of triple junction (•) and grain boundary mobility (�) for < 111 > tilt grain boundary
system in pure Al [42].

triple junction kinetics to grain boundary kinetics was
observed (Figs 10 and 11). Experiments revealed that
triple junctions do possess a finite mobility. Moreover,
the extent of the changes of the angle θ and criterion
� are such ones that don’t permit to explain them by
thermodynamic factors and there are no doubts in the
kinetic nature of the phenomena.

Molecular dynamics simulation studies of the mi-
gration of grain boundaries with triple junctions con-
firm that the triple junction mobility is finite and can
be sufficiently small to limit the rate of grain bound-
ary migration [43, 45]. The major distinctive feature
of this study was that molecular dynamics simulations
of individual triple junction migration was performed
for experimental geometrical configurations shown in
Figs 6 and 7 (Figs 12 and 13). The analytical solu-
tions and the analysis of grain boundary motion given
in [39–41] serve as a theoretical background of the stud-
ies discussed. The static - equilibrium - grain boundary
triple junction angles and the dynamic triple junction
angles were measured as a function of grain size, grain
boundary misorientation and direction of migration. In
most cases, the static and dynamic triple junction an-
gles were observed to be nearly identical. However,
substantial deviations between the two were observed
for low � boundary misorientations (Fig. 14). The rate
of change of the half-loop grain boundary area dur-
ing the triple junction migration is compared with that
extracted from previously conducted bicrystal simula-
tions, enabling the extraction of intrinsic (albeit nor-
malized) steady-state triple junction mobility [43, 44].
This mobility quantifies the effect of triple junctions on
grain boundary migration. Furthermore, the normalized
triple junction mobility exhibits strong variations with
boundary misorientation, with strong minima at low �

misorientations. The triple junctions create substantial
drag on grain boundary migration at these low mobility
misorientations. One interesting feature of the results
is that the triple junction mobility depends upon the
direction that the triple junction migrates. Again, the
normalized triple junction mobility was found to have
significant dependence on direction of migration for the
case of low � grain boundaries (Fig. 14). On the whole,
the simulations confirm the experimental observations
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Figure 11 Temperature dependence of reduced grain boundary mobility Ab (solid circles) and reduced triple junction mobility Atj (solid squares) for
the system <1010> (a) and for the system <1120> (b): reduced grain boundary mobility Ab (solid triangles) and reduced triple junction mobility
Atj (solid squares) [47].

Figure 12 The atomic configuration of a ϕ=33◦ migrating triple junction for the “Fig. 6” simulation geometry at three instants of time: (a) t = 550τ ,
(b) t = 1245τ and (c) t = 2550τ . The bold lines indicate the tangents to the half-loop boundary at the triple junction. The dynamic triple junction angle
was θ = 56◦ in (a) θ = 58◦ in (b) and θ = 58◦ in (c) [45].

Figure 13 Same as in Fig. 10, but for the “Fig. 7” geometry. The atomic
configurations correspond to instants of time: (a) t = 2000τ and (b) t =
14000τ . The dynamic triple junction angle was θ = 61◦ in (a) and θ =
62◦ in (b) [45].

of non-equilibrium triple junction angles and substan-
tial triple junction drag seen in recent experiments [41–
43, 45–47].

In the light of the results discussed, it is of interest
to consider the Von Neumann–Mullins relation. Ac-
tually, it was repeatedly pointed out that one of the

three assumptions on which this relation is based is
the requirement associated with triple junction mobil-
ity, namely the mobility of triple junctions should be
infinitely large to establish equilibrium contact angles
at triple junctions, which for uniform grain boundaries
are equal to 120◦. To conserve the central idea of the
Von Neumann–Mullins relation let us consider a situa-
tion when the influence of the triple junction is rather
large, but nevertheless, the motion of the system can
be viewed as grain boundary motion, since the driving
force is still due to the grain boundary curvature, i.e.
the role of the triple junctions is reduced to a change of
the angle θ . As mentioned above Equations 77 and 78
describe the steady state value of the angle θ . Clearly
triple junctions in real polycrystals rarely experience
steady state motion. However, the attainment of a true
steady state is not important in this context. Even if the
angle θ is not in steady state with the moving triple junc-
tion, it will be different from the equilibrium θangle π /3
as assumed for the Von Neumann-Mullins relation and
thus, will affect the kinetics with the same tendency as
in steady state.

Since we consider the motion of a boundary driven by
grain boundary curvature with a triple junction and due
to the fact that triple junctions have their own mobility
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Figure 14 The misorientation dependence of � the simulations with geometry given in Fig. 6 at T = 0.3 Tm (a) [43] and the ratio
ma

tj

mb
tj

of the triple
junction mobility extracted for the simulation geometry shown in Fig. 6 (ma

tj) and Fig. 7 (mb
tj) [45].

the motion of such a boundary can be considered as a
motion of a boundary with mobile defects [48]. That is
why the rate of area change can be expressed as [48]:

d S

dt
= −mbγb

∮
dϕ

1 + 1
�

= − Ab

1 + 1
�

∮
dϕ (75)

Because the integral
∮

dϕ for n-sided grains under
the impact of a non-equilibrium contact angle is equal
to [39]

∮
dϕ = 2π − n(π − 2θ ) Equation 72 takes the

form

d S

dt
= − Ab

1 + 1
�

[
2π − n(π − 2θ )

]
(76)

Obviously the expression for the rate of area change
will be different for grains with n < 6 and n > 6.
Since the limited mobility of triple junction reduces
the steady state value of the angle θ as compared to the
equilibrium angle, the shrinking rate of the grains with
n < 6 decreases. In other words, the influence of the
triple junction evolution decreases the vanishing rate of
grains with small topological classes.

Correspondingly, for grains with n > 6 the dragging
influence of triple junction increases the angle θ and
decelerates the process of grain structure evolution. In
other words, microstructural evolution is slowed down
due to triple junction drag for any n-sided grain. Since
the actual magnitude of θ is determined by triple junc-
tion and grain boundary mobility as well as grain size
there is no unique border between vanishing and grow-
ing grains with respect to their topological class any-
more. Let us consider this situation in greater detail.

Inasmuch as we are approaching the migration of
a grain boundary system with triple junction still as
grain boundary motion even though the influence of it
is rather large, the contact angle θ is a function of the
criterion �:θ = θ (�). By considering this situation in
the vicinity of the “equilibrium” state, (θ = π/3) we
can obtain the expression for θ = 0(�) in an explicit
form [49]. Actually, expanding the function 2 cos θ −1
into a power series in the vicinity of θ = π/3 for n < 6
and n > 6, respectively, and neglecting terms above

first order for n < 6, we arrive at:

2θ = �(2 cos θ − 1)) ∼= �[(2 cos θ − 1)θ=π/3

+ (−2 sin θ )θ=π/3(θ − π/3) + · · ·] (77)

and, therefore,

θ =
√

3π�

6 + 3
√

3�
(78)

and

d S

dt
= mbγbπ

3
(
1 + 1

�

)
(

n
6 + √

3�

2 + √
3�

− 6

)
(79)

For � → ∞—boundary kinetics regime—the expres-
sion (83) approaches the Von Neumann—Mullins rela-
tion. It is of particular interest to consider the topolog-
ical class n∗ of grains for which d S

dt = 0

n∗ = 2 + √
3�

1 +
√

3
6 �

(80)

Obviously, for � → ∞ n∗ → 6 and n∗ decreases for
small �.

Let us consider the case for n > 6. From Equation
74

1

�
= 2 cos θ − 1

ln sin θ
∼=

(
2 cos θ − 1

ln sin θ

)
θ=π/3

+

+
[
(−2 sin θ ) ln sin θ − (2 cos θ − 1) cot θ

(ln sin θ )2

]
θ=π/3

× (θ − π/3) + · · · (81)

Finally, we arrive at

1

�
=

(
− 2 sin θ

ln sin θ

)
θ=π/3

(θ − π/3)

= −
√

3

ln sin π/3
(θ − π/3)
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or

θ = π/3 + 1

�B
, whereB = −

√
3

ln sin π/3
(82)

and the expression for d S
dt reads

d S

dt
= mbγbπ

3
(
1 + 1

�

)
[

n

(
1 − 6

π�B

)
− 6

]
(83)

As for n < 6, for � → ∞ Equation 83 approaches the
Von Neumann–Mullins relation. The value of n∗ in this
case is equal to

n∗ = 6

1 − 6
π�B

(84)

For � → ∞ n∗ tends to the value 6, and n∗ grows as
� decreases.

It is seen that the drag effect of grain boundary triple
junctions is manifested in an “increase” (in a topolog-
ical sense) of shrinking grains and in a “decrease” of
growing grains, respectively.

Let us examine the behavior n∗(�) for n < 6 and
n > 6. In Fig. 15 these values are denoted as n∗

L(�)
and n∗

H(�), respectively. From the previous discussion
it appears that grains with topological class between
n∗

H(�) and n∗
L(�) are neither capable of growing nor

of shrinking (Fig. 15). Hence, grains of the topological
classes in the hatched area will be stable.

So far we have considered the motion of a grain
boundary system with triple junctions in the case that
the system moves under boundary kinetics while triple
junctions only slightly disturb the motion of the sys-
tem. In the following we consider the rate of change of
a grain area S and peculiarities of grain growth when
the motion of grain boundaries is controlled by the mo-
tion (mobility) of triple junctions. To begin with we will
show that under triple junction control in the course of
grain growth in 2D systems the grains will eventually
be bordered by straight lines, i.e. they will assume a
polygonal shape.

Let us consider the curvature of a grain boundary
system with triple junctions (Figs 6 and 7). As shown
in [43] for the system sketched in Fig. 6 we obtain with

Figure 15 Functional dependency of n∗
H (�) and n∗

L (�) [49].

ξ = a
2θ

for the local curvature of the boundaries

K = 1

ξ
e−x/ξ+ln sin �

= 2�

a
e− 2�

a x sin �(2 cos � − 1)e
2�

a x (85)

while for the geometry shown‡ in Fig. 7

K = ln sin �

x0
e

x
x0

ln sin �

= �

x0
(1 − 2 cos �)e

x
x0

ln sin � (85a)

Since for triple junction kinetics � → 0, also the grain
boundary curvature K approaches zero, i.e. the grain
structure of 2D polycrystals comprises straight grain
boundaries which extend between the triple junctions.
In other words, under triple junction kinetics the grains
in a 2D polycrystal represent a system of polygons.
More specifically, as shown in [48], in the framework
of triple junction kinetics a polygon of arbitrary shape
will be transformed in an equilateral polygon, and any
deviation from an equilateral polygon will generate a
force to restore the equilibrium shape. The only excep-
tion is a triangle. In other words a grain of topological
class n = 3 is always unstable and must disappear. Fi-
nally, all other shrinking polygons must by necessity
go though this stage eventually.

We reason that this phenomenon has important con-
sequences for the development of grain growth [48].
Let us take a look at the evolution of a shrinking grain
in the course of grain growth. The topological class of
such a grain should be smaller than 6, naturally tak-
ing into account all corrections to the Von Neumann-
Mullins relation, given above. As shown above the tran-
sition between boundary and triple junction kinetics
does not only depend on grain boundary and triple
junction mobility, but on the size of a grain as well.
When the size of a grain diminishes progressively there
comes a time where boundary kinetics becomes re-
placed by junction kinetics. This will happen to grains
of the topological class n = 4 or n = 5 which are
bound to shrink even after such a transition to triple
junction kinetics. Grains of topological class n = 3
will collapse without transforming into a regular poly-
gon. Since the kinetics of triple junctions is signifi-
cantly slower than boundary kinetics, the four and five-
side polygons will shrink, and eventually converge to a
point although at a markedly smaller rate. Experimen-
tally this phenomenon will manifest itself in the mean
value of the topological class of vanishing grains. In
Fig. 16 experimental data of grain growth in aluminum
foil with 2D (columnar) structure is presented, in terms
of the grain size dependence of the mean topological
class <n> [50, 51]. Extrapolation of this experimen-
tal dependence to zero area yields the mean value of
the topological class of vanishing grains. As can be
seen <n> (0) = 4.2 [45] and <n>(0) = 4.0 [46]

‡ We note that for the grain boundary system presented in Fig. 7 triple
junction control causes� → π/2.
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Figure 16 Dependence of the mean topological class <n(s)> on ”grain size” s/<s> (normalized by the average grain size) in pure Al [50] (a), [51]
(b).

respectively., i.e. n = 4 is the smallest topological class
to shrink in a stable manner (Figs 16a and b).

Let us finally consider the behaviour of a regular
n-sided polygon. The change of its area d S can be rep-
resented as [48]:

d S

dt
=

∮
Vndl = −Vn

∮
dl = −Vn� (86)

where Vn is the boundary velocity parallel to the bound-
ary normal, � is the perimeter of a polygon.

For a regular polygon

Vn = VTJ cos(π/2 − θ )

= mTjγ (2 cos θ − 1) cos(π/2 − θ ) (87)

Since the angle θ for a regular n-sided polygon is equal
to π (n − 2)/2n, Equation 91 can be rewritten as

Vn = mTjγ [2 sin(π/n) − 1] cos(π/n) (88)

where n is the topological class of the grain. From Equa-
tions 87 and 88 we obtain the rate of change of the grain
area S, when grain boundary motion is controlled by
the displacement of the triple junctions

d S

dt
= −mTjγ [2 sin(π/n) − 1] cos(π/n)� (89)

The perimeter of a regular n-sided polygon is equal to:

� = 2n R̃ sin

(
π

n

)
= 2nr̃ tan

(
π

n

)
(90)

where R̃ is the radius of the circle circumscribing the
polygon and r̃ is the radius of the circle inscribed into
the polygon.

Then Equation 89 can be expressed as:

d S

dt
= −mT jγ n R̃ sin

(
2π

n

)[
2 sin

(
π

n

)
− 1

]

= −2mT jγ nr̃ sin

(
π

n

)[
2 sin

(
π

n

)
− 1

]
(91)

In essence, therefore, a limited triple junction mobility
always slows down the evolution of grain microstruc-
ture of polycrystals, irrespective whether the topologi-
cal class of the considered grain is smaller or larger than
6. Formally, for grains with n < 6, the sluggish motion
of the triple junction “reduces” the effective topologi-
cal class of growing grains, while for grains with n > 6
the triple junction behavior “increases” the topological
class of vanishing grains.

The mere fact that there is a growing grain with triple
junctions of low mobility requires the existence of other
grains with n < 6 to surround it. There is no point to
discuss to which grain their common junction belongs.

The only exception holds for n = 6, since a hexag-
onal grain structure now becomes unstable even when
the contact angle 2θ = 2π/3. Since the actual mag-
nitude of � is determined by the triple junction and
grain boundary mobility as well as the grain size and is
independent of the number of sides of a grain, there is
no unique dividing line between vanishing and growing
grains with respect to their topological class anymore,
like n = 6 in the Von Neumann-Mullins approach. As
has been detailed above for sufficiently small � the bor-
der between shrinking and growing grains represents a
region bounded by the lines n∗

H(�) and n∗
L(�) (Fig. 15)

which degenerates to a line for � → ∞.
As for the situation, when grain boundary migration

is completely controlled by triple junction motion, it is
interesting to compare the obtained Equation 91 with
the Von Neumann–Mullins relation (72), which gives
the rate of area change of a grain with topological class
n under the condition that the triple junctions do not af-
fect grain boundary motion. Evidently, the qualitative
behaviour of Equations 91 and 72 is similar. Grains with
n > 6 will grow while those with n < 6 disappear in
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accordance with both Equations 72 and 91. What distin-
guishes Equations 91 and 72 is, firstly, the dependence
of the rate of change on the topological class n. Ac-
cording to Equation 72, dS/dt increases infinitely with
the number n, whereas for the triple junction kinetics,
as can be extrapolated easily

lim
n→∞

d S

dt
= 2π R̄mtjγ (92)

The second distinctive difference is connected with the
dependence of the rate of area change on the grain size.
The Von Neumann–Mullins relation (79) does not de-
pend on the grain size, whereas Equation 91 relates the
rate of area change to the grain size.

In conclusions, an investigation into the effect of
triple junction mobility on the rate of change of the
grain area during 2D grain growth revealed that a fi-
nite junction mobility exerts a drag on the adjoining
grain boundaries. This is reflected by a deviation of the
grain vertex angles at triple junctions from their equi-
librium value 2π /3 and correspondingly, by a modi-
fication of the Von Neumann-Mullins relation. It was
shown that for the situation when the triple junction
influence on grain boundary motion is large enough,
but nevertheless, grain boundary motion is controlled
by grain boundary kinetics, the triple junction influence
results in a reduced rate of microstructure evolution dur-
ing grain growth, since the effective topological class
of growing grains (n > 6) is decreased and of shrinking
grains (n < 6) is increased. The triple junction influ-
ence creates a “topological range” of “stable” grains
which are neither capable of growing nor of shrinking
(Fig. 15).

It is stressed also that experimental results [50, 51]
of the limiting topological class of disappering grains
correlate both with the developed concepts of grain evo-
lution in the course of grain growth controlled by triple
junction kinetics and with the generalized form of the
Von Neumann–Mullins relation.

Also, when grain boundary motion is controlled
by the displacement rate of triple junctions, the Von
Neumann–Mullins relation is replaced by a relation,
that does not only take into account the topological
class of a grain but its perimeter as well.

The considered problem and thus, the obtained re-
lations, are relevant for the kinetics of general mi-
crostructure evolution in polycrystals, but especially in
nanocrystalline systems, and in the case of abnormal
grain growth.

7. Relative efficiency of different mechanisms
on retardation of grain growth

Finally, we will proceed to the essential engineering
problem: a comparison of the efficiency of the drag
effects on grain growth [52].

The rate of grain area change d S
dt of a grain is chosen

as a measure of stability of a grain structure. It seems
surprising to choose a rate as a measure of stability. The
advantage of such a measure is evident: the change of
grain area characterizes grain growth to a greater extent

than the change of grain size which can be distinctly
different even for the same grain. We shall consider the
problem for 2D polycrystalline structures. Doubtlessly,
most materials do not represent 2D systems. However
the concepts of grain growth on the basis of bound-
ary and junction migration were elaborated best for 2D
systems. Further, for the value d S

dt there is a strict Von
Neumann-Mullins relation for the uniform boundary
approach, and a corresponding relation [48] for junc-
tion controlled grain growth. If the velocity of grain
boundary motion V is known we can express the rate
of grain area change d S

dt = d
dt (R̄2) = 2R̄ d R̄

dt = 2R̄V ,
where 2R̄ is a mean grain size. Finally, since we are
interested in the relative efficiency on grain growth re-
tardation a 2D approach is physically adequate.

Let’s consider the relative efficiency of different
structural elements and defects of a polycrystal on grain
growth. For this, we will use a ranking of the dimen-
sionless criterion λik,

λi,k =
(

d S
dt

)
i(

d S
dt

)
k

(93)

which constitute a ratio of the rate of grain area change
for different regimes and drag mechanisms. For in-
stance, the situation λik < 1 signifies that grain growth
is controlled by mechanism (i) and the magnitude of
λik determines the efficiency of the drag.

7.1. Impurity drag
For grain boundary kinetics the rate of grain area change
d S
dt is expressed by the Von Neumann–Mullins relation
(72). The influence of impurities is effectively reflected
in the grain boundary mobility mb(c), where c is the
concentration of the impurities. The criterion λimp, 0 in
this case is equal to:

λimp,0 =
(

d S
dt

)
imp(

d S
dt

)
C=0

=
mb(c)γbπ

3 (n − 6)
mbγbπ

3 (n − 6)
= mb(c)

mb
(94)

where ( d S
dt )C=0 and ( d S

dt )imp are the rate of grain area
change in a “pure” metal and in a metal with impu-
rities, respectively. As the mobility depends strongly
on the crystallographic parameters of a grain bound-
ary the most correct way to define λimp,0 is to use data
for specific and defined grain boundaries with differ-
ent amount of impurities. For instance, for a <111>

tilt grain boundary (misorientation angle 38.2◦ (�7))
in Al with total impurity content 0.4 ppm and 7.0
ppm, respectively, at 200◦C the criterion λimp,0 is equal
to 5 · 10−4. For a non-special grain boundary <111>

(misorientation angle 40.5◦) at the same temperature
λimp,0 = 1.7 · 10−4 [53].

Unfortunately, the number of corresponding exper-
imental studies is extremely small. On the other hand
materials engineers are interested in the so called “av-
erage“ grain boundary. As a first approximation we
propose to use a combination of the Burke-Turnbull
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expression for the grain boundary velocity [54]

V = bν	a P

kT
exp

(
− Hm

kT

)
(95)

(b: atomic spacing, ν: Debye frequency, Hm: activa-
tion enthalpy of grain boundary motion) and the Lücke-
Detert approximation which takes into account the ef-
fect of impurities on grain boundary mobility:

mb =
D0 exp

(
− (HDimp+Hint)

kT

)
Na B0kT · c

(96)

where D0: preexponential factor of the diffusion co-
efficient, HDimp: activation enthalpy for bulk diffusion
of impurity atoms, Hint: interaction energy of impu-
rity atoms with the boundary, Na: number of adsorp-
tion sites in the grain boundary, B0: preexponential
factor of the adsorption coefficient, c: bulk impurity
concentration.

With the approximation Hm = HSD, we arrive at:

λimp,0 =
D0 exp

(
− (HDimp−HSD+Hint)

kT

)
Na B0	abν · c

(97)

For instance, let us consider Fe as an impurity in
aluminum. Then D0 = 91 m2/s, Hdimp = 2.68eV;
HSD = 1.48eV [55]; Hint

∼= 0.24eV [56, 10]; Va ≈
5.10−5 mol/m2; 	a ≈ 10-5 m3/mol; B0 = 1; b =
3 · 10−10m; n = 1013. Then for c ≈ 10−5 at 200◦C
λimp,0 ≈ 3.6 · 10−3.

It is advisable to point out that grain boundary absorp-
tion decreases with decreasing grain size what makes
impurity drag less effective.

7.2. Triple junction drag
In this instance we compare the rate of area change
as affected by triple junction drag compared to free
uniform boundary motion.

λtj,b =
d S
dt

∣∣
tj

d S
dt

∣∣
b

= −mtjγb R̄n sin
(

2π
n

)[
2 sin

(
π
n

) − 1
]

mbγπ

3 (n − 6)

(98)

where R̄ is the grain size. As shown in [48], triple junc-
tion kinetics cause a polygon of arbitrary shape to be
transformed into an equilateral polygon, and any devi-
ation from an equilateral polygon will generate a force
to restore the equilibrium shape.

For the average topological class of a 2D system,
namely for n̄ = 6. λtj,b is indefinite, but with the
L’Hôpital’s rule

λtj,b = lim
n→6

d
dn

(
d S
dt

)
tj

d
dn

(
d S
dt

)
b

= 3

4

mtj R̄

mb
= 3

4
� (99)

A distinctive property of the expressions (98) and
(99) is the explicit dependency of λ on the grain
size.

Unfortunately, grain boundary triple junction mobil-
ity has been explored very poorly. Using experimental
data [42] for a triple junction formed by 〈111〉 tilt grain
boundaries in pure Al, R̄ = 10−8 m and 200◦C and
300◦C, we obtain � = 10−12 and � = 4·10−10, respec-
tively. For another investigated triple junction formed
by the same tilt boundary system (with misorientation
angles different from previous case) the values �for
R̄ = 10−8 m at 200◦C and 300◦C are equal to � =
10−11 and 10−8 respectively. In other words, the effi-
ciency of triple junction dragging for R = 10−8 m at
200◦C: λtj−b(200◦C) ≈ 10−12 and λtj,b (200◦C) ≈ 10−11,
at 300◦C: λtj,b (300◦C) ≈ ·10−9 and λtj,b (300◦C)
≈ 10−8, respectively. As a result triple junctions con-
stitute a powerful drag factor against grain growth in
nanocrystalline materials.

To illustrate the drag power of triple junctions it is
helpful to discuss experimental work of a “direct” com-
parison of the mobility of a grain boundary system with
and without a triple junction [47]. Actually, the config-
uration (Fig. 6) without a triple junction constitutes a
grain boundary half-loop, the theory and experimental
features of which are well elaborated [10]. The motion
of a grain boundary half-loop in Zn of 99.995% pu-
rity was studied. In addition, the motion of practically
the same half-loop with a low-angle straight bound-
ary in configuration Fig. 6 was investigated. “Practi-
cally the same” means that the incorporation of the
low-angle grain boundary changes the misorientation
of the curved grain boundaries only very moderately.
Hence, we can conduct a “direct” comparison between
the motion of a grain boundary half-loop and the mo-
tion of the “same” half-loop with a triple junction. Two
tilt grain boundary systems were studied: 84◦ 〈1120〉
and 62◦ 〈1010〉. In the triple junction configuration the
misorientation of the straight boundary in both cases
was about 3◦. The dependency of the reduced displace-
ment al(t) on time is given for both configurations in
Fig. 17. By definition a�(t) = a · �(t), where a is the
width of the half loop and �(t) is displacement with
time, takes automatically care of a changing width of
the half loop, i.e. is independent of the driving force
λ/a. The experimented results demonstrate the strong
drag of the triple junction on the motion of the grain
boundary system [47].

7.3. Vacancy injection drag
With the expression for the effective velocity of grain
growth under the influence of ejected vacancies Equa-
tion 40 the effective mobility of grain boundaries can
be expressed as:

mbeff = Veff

P
= 1

36
· R DSD

NkT Z (βδ)2
(100)

where P = γ

R̄
is a driving force for grain growth.

Comparing this with boundary motion unaffected by
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Figure 17 Time dependence of reduced displacement al(t) for 〈1120〉
tilt grain boundary half-loop (solid circles) and triple junction configu-
ration (solid squares) at T = 390◦C [47].

vacancy supersaturation we define the criterion

λvac,b = mbeffγπ (n − 6)

3

/
mbγπ (n − 6)

3

= 1

36
· DSD

Ab

R̄γ

NkT Z (βδ)2
(101)

where Ab is the reduced mobility of grain boundaries:
Ab = mbγ . For pure Al at 300◦C using the experimen-
tal data of grain boundary mobility [10] λvac,b ≈ 103 R,
and with R̄ in the order of 10−8m λvac,b ≈ 10−5.

7.4. Particle drag
Two types of particle drag have to be considered: the
dragging by small mobile particles and large immobile
particles. However, the grain size in nanostructures is
so small that the existence of large immobile particles
is difficult to imagine, since by common understanding
the particle size has to be smaller than the grain size.
That is why we will only consider the joint motion of
grain boundaries together with the particles. The effec-
tive mobility of a grain boundary moving together with
the particles was derived (Equation 26):

meff = mp(r0)

n0
(102)

where mp(r0) and n0 are the mobility of particles of
radius r0 and n0 is the number of particles per unit area
of the boundary, respectively. With Equations 26–31
and the approach used above we arrive at

λpart,b =
d S
dt

∣∣
part

d S
dt

∣∣
b

= mbeff

mb
= mp(r )

n
· 1

mb

= 2

3
· δ

r2
· DS	a

kT mb
· cB − cA

c0 − cA
(103)

With the parameters δ ≈ 10−9 m; DS ≈ 10−10 m2 s−1

[57]; 	a ≈ 10−5 m3 mol−1: γ b ≈ 1J ·m−2; T = 573 K;
cB = 1; cA = 10−4; c0 = 10−3; Ab ≈ 10−10 m2s−1

[10], T = 200◦C, we arrive at λpart,b � 10−15m2

r 2 . In

other words only sufficiently “large” particles will ex-
ert an efficient drag on grain growth in nanocrystalline
systems.

It is of interest to consider the relative efficiency of
particles and triple junctions on retardation of grain
growth. We will consider the most “favourable” case
for particles, their highest possible velocity of motion
together with the grain boundary, i.e., the situation when
the force acting on the particle balances the bonding
force between the particle and the boundary:

V = mp(r0) fp(r0), fp(r ) = 3

2
πr0γb.

With the approach repeatedly used above we obtain the
mobility of a grain boundary migrating together with
the particles at their maximum speed:

mbeff = V

P
= πmp(r0)r0 R̄ (104)

Consequently, the relative efficiency of triple junction
drag compared to mobile particle drag can be expressed
as:

λtj−p = 3

4

mtj R̄

mbeff
= 3

4

mtj

πmp(r0)r0
(105)

With the same values of the parameters used in
Equation 103 and the reduced triple junction mobil-
ity γbmtj ≈ 5.6 · 10−13ms−1[42] for 300◦C in Al we
arrive at:

λtj,part ≈ 2 · 1015m−3 · r3 (106)

One can see that triple junction drag becomes compa-
rable with particle drag only for r ≥ 10−5m, in other
words for very large particles, (r > 10 µm). In essence,
the triple junction most effectively drag grain boundary
motion in nanocrystalline materials.

8. Conclusions
The thermodynamic and kinetic aspects of grain growth
and grain microstructure evolution in fine grained
and nanocrystalline materials were considered. It was
shown that neither impurities nor structural elements
of a polycrystal can suppress grain growth completely,
but under certain conditions they will slow down the
process drastically.

A finite mobility of grain boundary triple junctions
changes substantially our concepts of grain structure
evolution in the course of grain growth.

The relative efficiency of the drag effect by different
elements and defects of a polycrystalline microstruc-
ture was considered. Triple junction drag was found
to be most effective for microstructural stabilization of
very fine grained microstructures. We propose to use
the derived hierarchy of dragging efficiency as an ef-
fective tool for grain boundary engineering of granular
microstructures.
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