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Abstract

The effect of a finite quadruple junction mobility on grain growth evolution has been studied by means of computer simulations. For
this purpose a special three-dimensional grain assembly is proposed, which permits a steady-state motion of the grain boundaries and
junctions of the system. It was found that the behavior of the system is determined by the dimensionless parameter Kqp, which is related
to the quadruple junction mobility. Numerous simulations were carried out in order to determine the effect of this parameter on grain
growth. The results show that a finite quadruple junction mobility can slow down grain growth. However, the simulations also demon-
strated that a finite triple line mobility hinders grain growth even more effectively.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A polycrystalline aggregate is a system composed of
grains, grain boundaries, triple lines and quadruple junc-
tions. This system forms a topological network with a spe-
cific number of elements. For a long time, it was assumed
that the only element affecting grain-boundary migration
was the grain-boundary itself. Triple lines and quadruple
junctions were not taken into account because these ele-
ments were believed not to drag grain-boundary motion.
However, in recent years several theoretical and experimen-
tal studies [1–3] have demonstrated that triple lines can
have kinetics different from the adjoining grain boundaries,
i.e. triple lines can possess a finite mobility, and therefore
can drag grain-boundary motion. The first experimental
investigations were conducted only in a narrow range of
geometrical configurations which allow a steady-state
motion of a system of connected boundaries [4]. Later
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on, experimental and theoretical investigations on poly-
crystalline samples indeed confirmed the dragging effect
of triple lines [5].

Whereas the experimental study of triple lines can be
easily conducted in quasi-two-dimensional systems, qua-
druple junctions are true three-dimensional features and
hence their study can be only accomplished in three-dimen-
sional space which is difficult to do by experiments on met-
als, since metals are opaque. As a first attempt to address
this problem, Gottstein and Shvindlerman [6] introduced
a new concept, which would permit the study of a finite
quadruple junction mobility in a special grain assembly.
In the current study, we extend this concept and explore
the effect of a finite quadruple junction mobility on grain
growth by means of computer simulations.

2. Grain-boundary junctions

The structural elements of a polycrystal are the grain
boundaries, the triple lines and the quadruple junctions.
A triple line is the region where three grain boundaries
meet and interact with each other. Correspondingly, a
rights reserved.
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Fig. 1. Grain assembly proposed in Ref. [6] for the determination of the
dimensionless parameter Kqp.
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quadruple junction is the point of intersection of four triple
lines and respectively six grain boundaries. The evolution
of such systems is determined by grain-boundary migra-
tion. However, triple lines and quadruple points may influ-
ence the evolution of the system as well.

2.1. Triple line effect on the evolution of connected grain-

boundary systems

Shvindlerman et al. [7] were the first to consider the
effect of triple lines on grain-boundary migration. They
used a two-dimensional tri-crystalline system for the deter-
mination of the dimensionless parameter Ktl that character-
izes the influence of a finite triple line mobility mtl on the
evolution of the system1 and is given by

Ktl ¼
mtl � r
mgb

ð1Þ

where mgb is the grain-boundary mobility and r represents
the grain size. If Ktl� 1, the triple line mobility governs the
motion of the boundary system. Conversely, if Ktl� 1 the
evolution of the system is determined by the grain-bound-
ary mobility [4].

2.2. Quadruple junction effect on the evolution of connected
grain-boundary systems

In analogy with triple lines, it can be envisaged that also
quadruple junctions can drag the evolution of connected
systems. In fact, Gottstein and Shvindlerman [6] proposed
the four grains assembly outlined in Fig. 1. The main fea-
ture of this configuration is that one of the four grains
has only three boundaries as depicted by the enclosing tri-
ple lines shown in Fig. 1. In such configuration, it is
assumed that the motion of the triple lines in the system
proceeds under the action of the triple line tension cl and
is assumed to occur in steady-state (which takes place if
the shrinkage of the three-sided cross-section proceeds
much more slowly than the displacement of the quadruple
junction). The dimensionless parameter describing the
influence of the quadruple junction is given by

Kqp ¼
mqp � a

mtl

¼ 2h1

2 cos h1 � 1
ð2Þ

where mqp is the quadruple junction mobility, mtl is the tri-
ple line mobility, h1 is the angle at the tip of the triple lines
at the quadruple junction, and a is the grain size (Fig. 1).
Obviously, the effect of a finite quadruple junction mobility
is reflected by the change of the angle h1. For a perfectly
mobile quadruple junction Kqp ?1 and h1 ? p/3,
1 As the considered system is two-dimensional, the mobility originally
regarded was that of the triple junction. A triple junction is normally
considered as the point that forms when a triple line intersects a plane.
However, the mobility is a property of the line and thus does not depend
on the dimensionality of the space in which this defect is represented. For
the sake of clarity, in this paper, we will refer exclusively to these defects
and their properties in their three-dimensional configuration.
whereas when the quadruple junction strongly drags the
motion of the system, Kqp ? 0 and h1 ? 0.

The assumptions made for the derivation of Eq. (2)
imply that the triple lines move under the action of their
own line tension, but that does not mean that this driving
force exclusively produces the motion of the system. In
fact, the main driving force stems from grain-boundary
curvature. The concomitant movement of the elements
entails an adaptation of the driving forces to the lowest
kinetics. For instance, if the quadruple junction drags the
motion of the system, the curvature of the triple lines and
grain boundaries needs to adjust in order to lower the driv-
ing force. The implications of a finite mobility of the differ-
ent structural elements can be only analyzed in an objective
frame, which is given by Eqs. (1) and (2). Since the mobility
of the grain boundaries is finite, it is also reasonable to
express Kqp in terms of mgb [1]

Kqp ¼
mqp � a2

mgb

ð3Þ
3. Effect of a finite quadruple junction mobility on the

evolution of the four grains assembly

For the simulations, a three-dimensional vertex model
was used. The model is detailed in Appendix A. The geom-
etry of the three-sided grain used in the simulations is
shown in Fig. 2; it perfectly matches the configuration
shown in Fig. 1. As stated in a previous section, the shrink-
age of the cross-section should not contribute to the vol-
ume change of the grain, in order to maintain the
geometry for the displacement of the quadruple junctions.
To check the validity of this assumption, the computed net
displacements of the triple line in the z-direction and the
quadruple junction in x-direction are plotted in Fig. 3a
for the case of an infinite quadruple junction mobility
mqp. Contrary to expectations, the magnitude of the triple
line displacement is not negligible. The velocity of both
junction elements is not very different (Fig. 3b); the
triple line velocity is only approximately 3–4 times slower
than the quadruple junction velocity. In fact, if the three-
sided grain is very long (a prerequisite for Eq. (2)), the



Fig. 2. Geometry of the three-sided grain shown in Fig. 1: (a) top view, (b) front view and (c) lateral view.

Fig. 3. Triple line and quadruple junction displacement in the x- and z-
directions, respectively (a); ratio of quadruple junction to triple line
velocity (b).
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cross-section and hence the whole grain vanishes even
before the two quadruple points meet. The necessary con-
dition that the motion of the quadruple junction essentially
dominates the volume change – if the shrinkage of the cross
section cannot be avoided – can only be achieved for very
small Ktl, when the shrinkage of the cross section is domi-
nated by triple line kinetics. In this case the grain bound-
aries are virtually flat (causing a reduction of the net
driving force for the shrinkage of the cross section). How-
ever, this would severely restrict the kinetic range where the
investigation can be carried out.

4. Steady-state quadruple junction motion

The cross section of the previous configuration corre-
sponds to a three-sided grain, which is subject to a high
shrinking rate. By contrast, for a steady-state quadruple
junction motion a cross-section, which neither grows nor
shrinks, is needed. The von Neumann–Mullins law [8] pre-
dicts that only a grain with a six-sided cross section can ful-
fill this condition. Furthermore, to make sure that the
dihedral angle between adjacent boundaries remains 120�
is necessary that the system consists only of regular hexa-
gons (Fig. 4a), i.e. the cross section plane should be filled
by regular hexagons. The corresponding three-dimensional
grain assembly is an arrangement of hexagonal prisms
(Fig. 4b). It is noted that in the front and the back of the
hexagonal prisms two more grains are connected to the
system, in order to generate intergranular quadruple
junctions.

4.1. Equations of motion

As in the configuration shown in Fig. 1, the motion pro-
ceeds under the action of the triple junction line tension cl,
which can be negative or positive. Fig. 5a shows two grains
of the configuration as well as the grain boundaries meeting
at a quadruple junction. The condition for steady-state
motion of the system is that the line tensions of all triple
lines at the quadruple junction have the same sign. Config-
urations, which are formed by triple lines with line tension
of different sign, are possible as well; however, configura-
tions with steady-state motion are unlikely to exist.

From Fig. 5a it is possible to extract the geometry of the
triple lines meeting at their point of intersection. The forces
acting on the quadruple junction due to the triple junction
line tensions are depicted in Fig. 5b. h denotes the angle
between adjacent triple lines on the same grain-boundary.
The force P acting on the quadruple junction can be deter-
mined from the sum over the line tension of all triple lines
meeting at the quadruple junction

~P ¼ ~F 1 þ~F 2 þ~F 3 þ~F 4 ð4Þ
For the used geometry, the sum is reduced to the sum of
the components in x-direction of the line tension cl. Due



Fig. 4. (a) Cross section of the used grain assembly, it is composed of regular hexagons and the dihedral angles are 120�. For this reason, no shrinkage or
growth of the cross section occurs; (b) the special grain assembly allows a steady-state motion of the quadruple points. Only the first layer of grains
adjoining the central grain is shown, however, there are more hexagonal grains filling the space (plane y–z) while in the x-direction, in front and in the back
of the configuration, two more grains, whose shape is irrelevant, adjoin the hexagonal grains.

Fig. 5. Geometry of four triple lines (tl) meeting at the quadruple junction
(qj).

Fig. 6. Shape of the grain boundaries and definition of the variables used
for the derivation of the equation of motion.
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to the symmetry of forces at the quadruple junction the
sum of forces in the y- and z-directions, respectively, are
zero. Hence,

P ¼ clð1þ 3 cos hÞ ð5Þ
Then, the velocity of the quadruple junction reads

vqp ¼ mqpP ¼ mqpc
lð1þ 3 cos hÞ ð6Þ

The equilibrium angle at zero force on the quadruple point
is easily calculated. It corresponds to the tetrahedral dihe-
dral angle h1 = arccos(�1/3) � 109.47�.

Taking into account the shape of the grain boundaries,
the problem can be comprehensively described. In Fig. 6
the grain-boundary shaded in Fig. 5b is shown with a
new coordinate system. The variables used for the deriva-
tion of the equation of motion are also shown.
The velocity of a moving triple line is assumed to be
given by

vn ¼ mtlc
lj ð7Þ

where

j ¼ �y00½1þ ðy 0Þ2��3=2 ð8Þ
represents the curvature of the triple line. The horizontal
steady-state velocity vx of the system is related to the nor-
mal velocity vn as follows:

vn ¼ vx cos u ¼ vx
y0

ð1þ ðy 0Þ2Þ1=2
ð9Þ

Combining Eqs. (7)–(9) yields the differential equation

y00 ¼ � vx

mtlcl
y0½1þ ðy 0Þ2� ð10Þ

which needs to be solved under the boundary conditions
y(0) = 0, y0(x0) = tana, y0(0) =1, and a = p � h.

The length x0 and the angle a are clear from Fig. 6, y(x)

is the shape of the triple line obtained by integration of Eq.
(10) and given by

yðxÞ ¼ � x0

ln sin a
arccos e

ð x
x0
Þ ln sin a

h i
ð11Þ
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Finally, the velocity vx of steady-state motion of the triple
line is equal to

vx ¼ �
mtlcl

x0

ln sin a ð12Þ

Since vx (Eq. (12)) and vqp (Eq. (6)) have to be identical,
this defines the dimensionless parameter Kqp which charac-
terizes the influence of a finite quadruple junction mobility
on grain-boundary migration.

� mtlcl

x0

ln sin a ¼ mqpc
l½1þ 3 cos h� ð13Þ

mqp � x0

mtl

¼ Kqp ¼ �
ln sin a

1þ 3 cos h
ð14Þ

Substituting a by h we obtain the final expression in terms
of this angle

Kqp ¼ �
ln sinðp� hÞ
1þ 3 cos h

¼ � ln sin h
1þ 3 cos h

¼ mqp � x0

mtl

ð15Þ

If the quadruple junction is perfectly mobile, then
Kqp ?1 and h ? 109.47�, which is the equilibrium angle.
In contrast, if the quadruple junction moves slowly and
drags the migration of the triple lines then Kqp ? 0 and
h ? p/2.

4.2. Effect on grain microstructure evolution

From Eq. (15), it is clear that the angle h is completely
defined by the dimensionless parameter Kqp, which, in turn,
Fig. 7. Displacement of grain-boundary and quadruple junction vs. time. The
The solid lines are linear fits and indicate the steady-state motion of the confi
where the displacements were taken from.
does not only depend on the triple line and quadruple junc-
tion mobilities but also on the grain size, x0. It is noted that
the term x0 is not the grain size itself but is directly related
to it. This is relevant because it indicates that, as in the case
of triple line drag, the effect of quadruple junctions
increases with decreasing grain size.

In order to demonstrate that the motion of the configu-
ration attains a steady-state motion, two simulations under
extreme conditions were performed. For the first simula-
tion triple line and quadruple junction mobilities were con-
sidered infinite. By contrast, for the second simulation an
extremely low quadruple junction mobility was used
(Kqp = 1.2 � 10�3).

Fig. 7 shows the longitudinal displacements of the grain-
boundary and the quadruple junction as a function of time
for the first case (Ktl =1, Kqp =1). The displacement was
taken directly from the simulations. Initially, all the bound-
aries were flat; after a short time the boundaries became
curved and the motion proceeded in steady-state. Minor
jitters are only the artifacts of the simulations. The dis-
placement of both considered elements is linear with time,
the velocities of grain-boundary and the quadruple junc-
tion are practically the same, i.e. both lines have the same
slope.

As expected, the motion also proceeds in steady-state
when Kqp is very low, as shown in Fig. 8. The displacement
is also linear in time, and both velocities are almost equal.
Evidently, the proposed grain configuration also attains a
steady-state behavior in the course of time.
triple line and quadruple junction mobilities were considered to be infinite.
guration since they are practically parallel. The grain indicates the points



Fig. 8. Grain-boundary and quadruple junction displacement vs. time for very low quadruple junction mobility. Steady-state motion also occurs for this
condition.
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One effect of a finite quadruple junction mobility can be
seen in the shape of the grain-boundary. The triple lines
delimiting the boundary become flat as a result of the
decrease of Kqp (Fig. 9). Eq. (15) predicts that the effect
of Kqp is reflected by a change of the angle h, however, this
also impacts the curvature of the triple lines and hence the
shape of the grain-boundary. The geometry of the triple
lines in Fig. 9 was taken directly from the simulations.
The steady-state angles obtained from the simulations
agree very well with the theoretical curve (Eq. (15)), as
shown in Fig. 10.

Qualitatively, a finite quadruple junction mobility can
modify the geometry of the evolving configuration. How-
ever, for a quantitative description it is necessary to evalu-
ate the grain size evolution as a function of Kqp. In Fig. 11,
the grain volume as a function of time is shown for differ-
ent values of Kqp. A small but evident retardation of the
kinetics can be observed with decreasing Kqp. This becomes
Fig. 9. Shape of the triple lines for different values of Kqp. Minor
deviations from the theoretical angles can be attributed to the discreti-
zation used in the simulations.
more obvious in Fig. 12, where the relative volume change
rate _V = _V 1

� �
is plotted ( _V 1 is the volume change rate when

Kqp ?1). Apparently, _V = _V 1
� �

! 1 when Kqp ?1. By
contrast, when Kqp ? 0, _V = _V 1

� �
should approach zero.

In Fig. 12, however, only a moderate decrease is to be seen,
which indicates that the overall effect of the quadruple
junctions on grain growth evolution is also moderate.
The limit Kqp ? 0 is thus only expected for practically
immobile quadruple junctions because the volume change
rate is indirectly a function of h, Kqp, or _V ¼ f ðvqpÞ ¼
f ðhðKqpÞÞ.

Fig. 12 demonstrates the scaling behavior of the model.
Three simulations with very different simulation parame-
ters are compared. The first simulation assumed a certain
value for the grain-boundary mobility, denoted as mgb0,
and an initial volume V0 of the grains with hexagonal cross
section of the configuration in Fig. 4. In a second simula-
tion, the grain-boundary mobility was one order of magni-
tude lower than mgb0, whereas a third simulation assumed a
volume 1000 times larger than V0. No significant differ-
ences in the relative volume change rate among the three
conditions are found. Fig. 12b shows the same graph but
restricted to the low and intermediate range of Kqp, for a
more accurate comparison. The small variations of the dif-
ferent simulations are below the uncertainty range.

5. Effect of a finite triple line mobility on the evolution of the

three-dimensional grain assembly

Due to the small size and the low frequency of quadru-
ple junctions, it is expected that their effect on grain growth
should be smaller in comparison, for example, to triple
lines, which occupy a much larger volume and occur more
frequently. In this section, the effect of triple lines on the
kinetics of the same three-dimensional configuration will
be briefly analyzed. In Fig. 13, the grain volume as a func-



Fig. 10. Comparison of the function h vs. Kqp and simulation results.

Fig. 11. Simulated grain volume vs. time for different Kqp (symbols are introduced along the lines for better identification).
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tion of annealing time is presented. Here mqp was consid-
ered infinite, while mtl was varied to achieve different
regimes of Ktl. The retardation of the kinetics by a finite
mtl is evident. It can be observed that in the large and
intermediate ranges (Ktl = [1,	1]) the volume decreases
linearly with time. This means that the motion of the
grain-boundary network occurs under steady-state condi-
tions. However, for values of Ktl� 1 the linearity is lost.
Under such conditions the kinetics become triple line
dominated, because the original curved grain boundaries
become flat and the dihedral angles at triple lines deviate
from the equilibrium angle (120�). At first glance, the effect
of triple lines is more pronounced than the effect of quadru-
ple junctions.

5.1. Triple line vs. quadruple junction drag

The comparison between triple line and quadruple junc-
tion kinetics serves to better understand the phenomenol-
ogy of grain growth, especially in nanocrystalline
materials. However, for the considered grain arrangement
such comparison has to be restricted to the regime of large
and intermediates values of Ktl, because as shown in
Fig. 13, for low values of Ktl, the system does not show
steady-state motion. Thus, in the following we assume
Ktl, Kqp > 5.

The volume change rate as a function of triple line and
quadruple junction mobility (Fig. 14) suggests that for Ktl,
Kqp > 100 the drag effect is practically constant. However,
for the intermediate regime (5 < Ktl, Kqp < 100) the triple
lines seem to drag boundary motion more effectively than
quadruple junctions as reflected by a much lower volume
change rate for Ktl = Kqp.

For intermediate values of Ktl, Kqp the differences in
_V ðKÞ are markedly pronounced, because _V ðKÞ is more sen-
sible to a change of Ktl than of Kqp. The derivatives of the
volume change rate with respect to Ktl and Kqp reveal that
d _V =dKtl

� �
Kqp!1

increases faster with decreasing Ktl than
d _V =dKqp

� �
Ktj!1

with decreasing Kqp (Fig. 15). In essence,
triple lines drag grain-boundary motion more effectively
than quadruple junctions contrary to predictions of other
authors [9].



Fig. 12. Relative volume change rate as a function of Kqp. Three different conditions are shown: (
) original condition; (h) grain-boundary mobility
reduced by a factor 10, and (D) the grain volume increased by a factor 1000; (b) magnification of Fig. 12a for low and medium values of Kqp, where the
solid line is just a guide to the eye.

Fig. 13. Grain volume as a function of time for different values of Ktl (symbols are introduced along the lines for better identification).
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Fig. 14. Volume change rate, for (�) Kqp is varied while Ktl is held infinite and for (d) Ktl is varied whereas Kqp is held infinite. The solid lines in this figure
were obtained by fitting the simulation data to functions of the type _V ¼ Ah � vðKqpÞ and _V ¼ Ah � vðKtlÞ, where Ah is the area of the hexagonal grain-
boundary of the configuration in Fig. 4, and v is the displacement velocity of the same grain-boundary in dependency of Kqp and Ktl, respectively. The
velocities can be determined with the combination of Eqs. (12) and (26), for the case of Kqp. For the case of Ktl see [4], where similar expressions can be
found.

Fig. 15. The rate d _V
dKi
ði ¼ tl;qpÞ as a function of Ki. These curves were

obtained by numeric differentiation of the curves in Fig. 14.
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6. Comparison with theoretical predictions

6.1. Analytical description of the volume rate of change

The von Neumann–Mullins relation gives a general and
physically transparent description of the growth of a defi-
nite grain in a polycrystal. The main advantage of this rela-
tion is its precise topological nature: a grain with
topological class n > 6 will grow while grains with n < 6 will
shrink. All attempts to derive a three-dimensional analog
[10–12] were successful only to a certain extent.

Recently, MacPherson and Srolovitz [13] introduced the
n-dimensional equivalent to the von Neumann–Mullins
law. The MacPherson–Srolovitz relation (Eq. (16)) consid-
ers two terms, the mean width L(D) of a given domain D

(grain) and the length of the edges e(D) (triple lines) of
the same domain.

dV
dt
¼ �2pmgbc LðDÞ � 1

6
eðDÞ

� �
ð16Þ

where dV/dt is the volume change rate of the domain, mgb

is the grain-boundary mobility and c is the grain-boundary
energy. L(D) and e(D) are defined as follows:

LðDÞ ¼ 1

2p

Xnef

i

biei ð17Þ

eðDÞ ¼
Xntl

i

etl
i ð18Þ

The term e(D) is simply the length of the triple lines of a
given grain and is equal to the sum of the length of all triple
lines ntl of such grain. In turn, the term L(D) reflects the lo-
cal variation of the surface with respect to a fixed reference.
The normal to each element dS of the surface characterizes
its spatial orientation, which may be different from the ori-
entation of other elements surrounding dS. Its difference to
an adjacent element across a junction of length ei is de-
noted by the angle b, also known as the turning angle.
The sum over all junctions nef leads to the mean width of
the whole domain. In particular, the orientation difference
b across a triple line corresponds to the external dihedral
angle as established by the surface tensions of the adjoining
grain boundaries. Another interesting feature of this term
is that it introduces implicitly the curvature of the surface.
In the following, we will compare the simulation results
with the MacPherson–Srolovitz equation for the case when



Fig. 17. The temporal evolution of the parameters L(D) and e(D).
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Ktl =1 and Kqp =1 and subsequently, the effect of low
values of these parameters on the same equation.

6.2. Comparison of simulation results with the MacPherson–

Srolovitz equation

The special configuration which was introduced in Sec-
tion 4 of this paper makes it possible to determine analyt-
ically all the terms of Eq. (16). In Fig. 16, one grain of the
configuration is shown. Two new variables, a and d, define
the dimensions of the grain; d is the length of the longitu-
dinal triple lines while a is the length of the triple lines of
the hexagonal cross section. The curvature of the triple line
is included in a.

The term e(D) for this grain reads

eðDÞ ¼
Xntl

i

etl
i ¼ 6d þ 12a ð19Þ

and the term L(D) is given by

LðDÞ ¼ 1

2p

Xnef

i

biei ¼
1

2p
2Lk þ

1

3
p � 6d þ 1

3
p � 12a

� �

¼ Lk

p
þ d þ 2a ð20Þ

where Lk is the unknown mean width of the two curved
faces of the grain. Because all other grain boundaries are
flat, b = 0 and thus, their surfaces does not contribute to
the mean width.

Combining Eqs. (19) and (20) with Eq. (16) the volume
change rate can be determined

dV
dt
¼ �2pmgbc

Lk

p
þ d þ 2a� d � 2a

� �
¼ �2mgbcLk ð21Þ

The volume change rate for the considered configuration
depends exclusively on the term Lk which represents the
only curved grain boundaries in the configuration. Since
the configuration moves in steady-state, _V ¼ const. This
prediction was examined by computer simulations. The
three-dimensional vertex simulations rendered indepen-
dently the parameters needed for the MacPherson–Srolo-
vitz relation [13] and _V .

Fig. 17 shows the calculated parameters L(D) and e(D)
taken directly from the geometry of the considered grain.
If the grain evolves in steady-state the curves L(D, t) and
e(D, t) have to be parallel to yield _V ¼ const: in Eq. (16).
Fig. 16. One grain of the special grain assembly and the dimensions
a and d.
According to Fig. 17, this condition is evidently fulfilled.
In addition, the value of the volume change rate calculated
according to Eq. (14) agrees perfectly with the simulation
results (Fig. 18). The observed small deviation is attributed
to the calculation of the parameter L(D) which is very sen-
sitive to the size of the mesh.

Another important question is whether the MacPher-
son–Srolovitz relation holds for the general case when the
driving force is not constant (i.e. the curvature depends
on time). We can use the configuration shown in Fig. 2
to investigate the problem. As demonstrated in Section 3,
this configuration does not evolve in steady-state. Corre-
spondingly, the volume does not change linearly with time
i.e. _V is not constant (Fig. 19).
Fig. 18. Comparison of dV/dt as obtained from simulations and
calculated using Eq. (16) for Kqp = Ktl =1.



Fig. 19. Simulated temporal evolution of the grain in Fig. 1.

Fig. 20. Comparison of theoretical predictions (Eq. (16)) and simulation
results for Kqp = Ktl =1.

Fig. 21. A comparison of the MacPherson–Srolovitz equation with the
simulations results for the case of a finite triple line mobility reveals a
strong discrepancy.
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According to Fig. 20, the predictions of Eq. (16) agree
very well with the volume change rate calculated from
the data of Fig. 19. For long times, simulations and theory
seem to diverge. However, this is caused by the decreasing
number of triangular facets in the simulation as the grain
shrinks which increases the error in the calculation of L(D).

6.3. The effect of a finite quadruple junction and triple line

mobility on the MacPherson–Srolovitz equation

For the derivation of Eq. (16), MacPherson and Srolo-
vitz considered that the dihedral angle at triple lines attains
its equilibrium value of 120�. Consequently, the angle
between triple lines at quadruple junctions must reach a
value of 	109.47�. Since a finite (low) mobility of these ele-
ments influences the value of these equilibrium angles, it is
expected that the MacPherson–Srolovitz equation fails to
predict adequately the volume change rate of a domain in
case of a limited mobility of the domain’s junctions. To
verify this, several simulations with the configuration
sketched in Fig. 4 were performed with different (non-infi-
nite) values of triple line and quadruple junction mobility.
In all cases, a deviation of Eq. (16) from the simulation
results was observed. However, for a finite quadruple junc-
tion mobility, the effect was less pronounced than for a
finite triple line mobility. With the purpose to demonstrate
this point, the simulations results for Ktl = 0.12 are com-
pared with the predictions of Eq. (16) in Fig. 21, which
shows a marked discrepancy.

One major effect of a finite quadruple junction mobility
is a change of the curvature of the triple lines, which implic-
itly alters also the length of the triple lines. The total length
of the triple lines e(D) for the configuration shown in
Fig. 16 is given by the sum of all triple line lengths a and
d. If the longitudinal triple lines are straight the calculation
of d is very simple, however, the determination of the
length a becomes problematic because the triple lines of
the hexagonal cross section are now curved. However,
Eq. (11) describes the shape of the triple line and can be
used to calculate the triple line length. The length l of
any two-dimensional curve of the form y = f(x) in the inter-
val [s1, s2] is given by

l ¼
Z s2

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dy

dx

� �2
s

dx ð22Þ

Applied to Eq. (11) we obtain

l ¼
Z x0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2x=c

1� e2x=c

r
dx ¼

Z x0

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2x=c
p ð23Þ

where c = x0/lnsina. Integration leads to
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l ¼ x0

ln sin a
arcsech sin a

¼ x0

ln sin h
ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 h

p
sin h

 !
ð24Þ

Accordingly, the length of the triple lines of the hexagonal
cross section can be easily calculated as

a ¼ 2l ¼ 2x0

ln sin h
ln

1þ cos h
sin h

� �
ð25Þ

By series expansion of Eq. (15), we find the angle h as a
function of Kqp

h ¼ 2Kqp

3Kqp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kqpð9Kqp þ 2Þ

p þ p
2

ð26Þ

While the length a strongly depends on Kqp, the term d does
not, at least not directly. Actually d changes linearly with
time

d ¼ d0 � 2vgbt ð27Þ
where d0 is the length of the longitudinal triple line at t = 0,
vgb is the velocity of the front and rear faces of the grain.
This velocity depends naturally on Kqp but remains con-
stant for Kqp = const. From the simulation, it is possible
to extract the dependency of the parameter a on Kqp and
to test the validity of the derived equations. For this, the
length a/x0 from the simulations is compared with Eq.
(25) (Fig. 22).

It would be also desirable to know analytically the
dependency of L(D) on h and Kqp. However, for the solu-
tion of this problem, the velocity of the grain-boundary
needs to be related to the velocity of the triple lines, in a
similar way as the triple line velocity relates to the quadru-
ple junction velocity. This would introduce the ratio of
grain-boundary and triple line energies, which is so far
unknown.
Fig. 22. Dependency of the triple line length on the parameter Kqp.
Nevertheless, from the simulations this dependency can
be extracted. According to the definition of L(D), the flat
grain boundaries do not contribute to this term. Moreover,
the turning angle of the longitudinal triple lines does not
depend on Kqp. Only the curved grain boundaries and
the turning angle of the triple lines at the cross-section vary
with changing Kqp. In Fig. 23, L(D) for the curved grain
boundaries is shown as a function of Kqp. L(D) increases
rapidly for small Kqp < 1. In the intermediate range
(1 < Kqp < 20), a transition occurs to a constant value of
L(D), which correspond to the curvature of the grain-
boundary at zero drag force.

Since the parameters L(D) and e(D) are affected by a
finite quadruple junction mobility, it can be expected that
a modified MacPherson–Srolovitz relation exists that takes
the additional parameter Kqp into account like recently
shown for the modification of the von Neumann–Mullins
relation for a limited triple junction mobility in two-dimen-
sional grain growth [5,14]. Since both L(D) and e(D) are
expected to depend on the junction mobility, a generalized
MacPherson–Srolovitz relation will be of the form

dV
dt
¼ f ðLðKqp;KtlÞ; eðKqp;KtlÞÞ ð28Þ
7. Summary

The effect of a finite quadruple junction mobility on
grain microstructure evolution was studied. Based on a
special grain assembly we introduced the parameter Kqp

which describes the influence of the quadruple junction
mobility on grain-boundary motion. By computer simula-
tion using a there-dimensional vertex model, it was demon-
strated that such configuration evolves in steady-state. The
simulation results also showed excellent agreement with the
predictions of the MacPherson–Srolovitz relation. It was
Fig. 23. Dependency of L(D) on Kqp for the curved grain boundaries of
the special grain assembly shown in Fig. 4.
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found that quadruple junctions can affect the kinetics of
grain growth; the growth rate was reduced with a decrease
of junction mobility. The effect of a finite quadruple junc-
tion mobility on the MacPherson–Srolovitz relation was
determined.
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Appendix A. Three-dimensional vertex model

For the simulations, a three-dimensional vertex model
that considers a front tracking approach was utilized. In
such approach, only the grain boundaries are discretized
whereas the grain interior is not. The grains are considered
only as the volume enclosed by grain boundaries and main-
tain their crystallographic orientation. The boundaries
(internal surfaces) are discretized in triangular facets
(Fig. A.1a). The facet construction of the grain boundaries
follows a similar procedure as outlined in Ref. [15]. For the
vertices of these facets, the forces and velocities are calcu-
lated from the local geometry [16]. The forces at vertices
arise from the surface tensions of the triangular facets that
adjoin the respective vertex.

Fig. A.1b shows a vertex and the facets surrounding it.
The force Ff1 due to the shaded facet f1 on the vertex P0

is given by

~F f1
¼ c

2
�~s0 � ð~s1 �~s0Þ
k~s1 �~s0k

: ðA1Þ
Fig. A.1. (a) Three-dimensional grain with grain boundaries discretized in tria
at triple junctions result from the surface tensions of the attached facets.
where c is the grain-boundary energy, and~s0,~s1,~s2 are the
edge vectors in the facet, which are fully determined by
the position of the vertices (P0, P1 and P2) conforming
the facet (Fig. A.1b).

The sum of the forces over all facets surrounding the
vertex leads to the net force

~F sum ¼
c
2
�
Xn

i¼1

~s0i � ð~s1i �~s0iÞ
k~s1i �~s0ik

: ðA2Þ

where n is the total number of facets meeting at P0. The
velocity of the vertex reads

~v ¼ meff �~F sum ¼
1

Df

�~F sum ðA3Þ

where meff is the effective mobility of the vertex and Df is
the drag factor, which is defined as

Df ¼
An

mgb

þ ds
mtl

þ 1

mqp

: ðA4Þ

mgb, mtl, and mqp are the grain-boundary, triple line and
quadruple junction mobilities, respectively, ds is the mean
distance between adjacent vertices over a triple line, and
An is the projected area of the surrounding facets onto
the direction of motion.

The discretization of the internal surfaces in triangular
facets permits also the calculation of the turning angle b
of the grain boundaries (Eq. (17)) by simple vector opera-
tions between facets adjacent to an edge. The angular
change of the surface of a boundary is given by the angle
between normal vectors of adjacent facets to an edge.
For instance, according to the geometry depicted in
Fig. A.1b, the normal vectors ~n1 and ~n2 to the facets f1

and f2 in Fig. A.1b can be respectively defined as

~n1 ¼
s1 � s0

ks1 � s0k
ðA5Þ

and

~n2 ¼
s2 � s3

ks2 � s3k
ðA6Þ
ngular facets. Different structural elements are distinguished; (b) the forces
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The turning angle bff between these two facets is obtained
simply by the dot product of the normal vectors as follows:

bff ¼ arccosð~n1 �~n2Þ ðA7Þ
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