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Thermodynamics and kinetics of grain boundary triple junctions
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Abstract—This paper assesses the contribution of grain boundary triple junctions to the driving force for grain growth and the
“energetic” effect of boundary junctions on grain growth in nanocrystalline materials. The first measurement of grain boundary line
tension allows the quantitative estimation of the fraction of the driving force due to boundary triple junctions. For polycrystals with
a grain size in the range �50 nm, it is comparable with the driving force from grain boundaries.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The traditional concepts of grain growth are based
on the assumption of the dominant role of grain bound-
aries. A most obvious example of such an approach is
the well-known von Neumann–Mullins relation for
two-dimensional (2D) grain growth. According to this
theory, boundary junctions (triple junctions) do not af-
fect grain growth, and their role is reduced to maintain-
ing the thermodynamically prescribed equilibrium
angles at the points where boundaries meet. A more re-
cent approach where triple junctions are considered as
grain boundary elements with specific kinetic properties
was introduced in Refs. [1–4]. Crystallographically
defined grain boundary configurations in tricrystals
and novel experimental techniques [1,2] have made it
possible to study the steady-state motion of grain
boundary systems with triple junction and to measure
accurately the mobility of the grain boundaries and
triple junctions. Moreover, molecular dynamics simula-
tions of triple junction migration were performed
for the same geometrical configurations as used in
experiment. Overall, the simulations support the exper-
imental observations of non-equilibrium triple junction
angles and ascertain a substantial triple junction drag
[5].
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It was found that the triple junction mobility is finite
and may be low. As shown in Refs. [1–4,6] grain bound-
ary triple junctions not only drag grain boundary mo-
tion and thus slow down grain growth, but also
essentially affect the evolution of grain microstructure
during grain growth. When grain growth is controlled
by the kinetics of grain boundary migration, grain
growth in a 2D polycrystal complies with the von Neu-
mann–Mullins relation. If grain growth becomes gov-
erned by the mobility of triple junctions, the kinetics
change, and the von Neumann–Mullins relation no
longer holds. This is more pronounced the smaller the
triple junction mobility. A generalized theory of 2D
grain growth, including a limited triple junction mobil-
ity, is given in Refs. [1–4]. The dimensionless criterion
K ¼ mtja

mb
, where mb is boundary mobility, mtj is triple

junction mobility, and a is grain size, is the central
parameter that controls the behavior of the boundary
system. For large K (large mtj or large grain size) grain
growth is determined by the grain boundary mobility
(grain boundary kinetics), and the mean grain size fol-
lows the well-known parabolic law hDi �

ffiffi
t
p

, where t
is the annealing time. For relatively small K, the triple
junction mobility dominates the grain growth kinetics
(triple junction kinetics), and the size increases linearly
with time. It is stressed also that the dihedral angles at
the triple junction in a polycrystal are determined by cri-
terion K. The generalized von Neumann–Mullins rela-
tion [7] can be expressed in terms of K:
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Here, S is the grain area, _S � dS=dt, n is the number of
the triple junctions (neighboring grains), cb is the grain

boundary surface tension, and B ¼ �
ffiffi
3
p

ln sin p=3
.

Evidently, for K!1 expressions (1) and (2) ap-
proach the von Neumann–Mullins relation.

For small values of K, conspicuous changes in
microstructure evolution during grain growth and of
microstructural stability are predicted. The theoretical
predictions are supported by the results of computer sim-
ulations. In particular, it was demonstrated that the ver-
tex angle H at the triple junction can deviate substantially
from the equilibrium value when a low mobility of the tri-
ple junction hinders the motion of the grain boundaries.
In fact, a transition from triple junction kinetics to grain
boundary kinetics was observed experimentally [4,6]. In
essence, a low triple junction mobility will exert a drag ef-
fect on grain boundary motion.

It was shown in Refs. [7,8] that the influence of grain
boundary junctions (triple line and quadruple junctions
in three-dimensional (3D) polycrystals) drag on grain
growth kinetics can be described in terms of K. The rate
of 3D grain growth can be expressed as

dhDi
dt
¼ mbP

1þ 1
Kqp
þ 1

Ktj

� � ð3Þ

where P ¼ 2cb
R is the driving force for continuous grain

growth. Here, 1/R is the grain boundary curvature.
For simplicity, assume R � hDi, Kqp and Ktj are the
quadruple point and triple junction criteria, respec-
tively [8]. Note that the reciprocal value of K, i.e., 1

K
is a measure of the drag effect of a given junction
on grain growth. With D(t = 0) = D0, integration of
Eq. (3) yields

1

2
hDi2 � hD0i2
� �

þ mb

mtj
ðhDi � hD0iÞ þ

mb

mqp
ln
hDi
hD0i

¼ 2cbmbt ð4Þ
However, triple junction drag is not the only triple junc-
tion effect on grain growth and grain microstructure
evolution. Another influence stems from the energy of
Groove root 1-2
Groove root 2-3

Groove root 1-3

x

z

y

u2-3(r)

Triple line

r

Groove root 1-2
Groove root 2-3

Groove root 1-3

Groove root 1-2
Groove root 2-3

Groove root 1-3

x

z

y

u2-3(r)

Triple line

r

(a) (b)

Figure 1. (a) Schematic 3D view of the line geometry at a triple junction. (b)
the triple junction lines, their line tension cl. Actually,
the excess energy of boundary junctions along with the
grain boundary energy constitute the driving force for
grain growth.

The following will show how to measure the triple
junction line tension and, finally, how much this energy
contributes to the driving force for grain growth will be
assessed.
2. Measurement of grain boundary triple line energy

The problem of triple line energy was discussed in a
speculative way by Gibbs [9], who came to the conclu-
sion that the excess free energy of a triple line between
fluid phases might be positive or negative. McLean
[10] contended that triple junctions should always have
a positive energy. Using computer simulation, Sriniva-
san et al. [11] came to the conclusion that a negative tri-
ple line energy is possible, whereas Van Swygenhoven
et al. [12] found that the triple line tension obtained in
the simulation studies was always positive. Nishimura
[13] and Fortier et al. [14] tried to measure the triple line
tension. They approximated the crater at the triple junc-
tion by a tetrahedron and estimated the energy of the
triple line to be of the order or 5 � 10�7 J/m.

A thermodynamically correct approach is given in
Refs. [15,16]. It is based on the equilibrium of four line
tensions at their point of intersection, the grain bound-
ary triple line and three triple lines at the bottom of
the thermal grooves of the joining boundaries (Fig. 1).
The term u(r) mathematically describes the profile of
the groove root as a function of r, where the vector
r = (x, y) denotes the planar coordinates of a point on
the groove root (Fig. 1a). The origin of the coordinate
system is attached to the point of intersection of the
three groove roots and the triple line. Moreover, it is as-
sumed that the surface tension is independent of the
crystal orientation.

From the equilibrium of the four line tensions, it fol-
lows for the triple line tension

cl ¼ clS
1�2 sin f1�2 þ clS

1�3 sin f1�3 þ clS
2�3 sin f2�3 ð5Þ

where cl and clS
i�j are the grain boundary triple junction

line tension and the line tension of the triple lines at the
bottom of the thermal groove, respectively, and fi�j are
the angles of each groove root of the corresponding
grain boundary at the center of the triple junction:
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AFM 3D view of the line tension equilibrium at a triple junction [16].
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The line tension of the triple lines clS

i�j is determined by
comparing the dihedral angle at the root of a flat and
a curved grain boundary groove (Fig. 1). In particular,
close to the point of intersection, the groove roots will
be curved. In the case where the grain boundary remains
flat but the root of the grain boundary groove is curved
[16], one must take into account an additional term,
which is principally equivalent to the Laplace pressure
for 3D curved grain boundary surfaces. Therefore,

cB � clS
@2u
@r2

½1þ ð@u
@r Þ

2�3=2
¼ 2cS cos

n
2

ð7Þ

where cB and cS are the grain boundary surface tension
and the crystal surface tension, respectively. The dihedral
angles denoted by n have the same meaning as h in the
classical equation of the thermal grain boundary groove,
cB ¼ 2cS cos h

2
, but are significantly different in value ow-

ing to the curvature of the grain boundary groove root.
As shown in Ref. [16], the necessary parameters to ex-

tract the triple line tension can be derived from atomic
force microscopy (AFM), such as the grain boundary
groove angles, the groove root angles at the curved part
of the grain boundary and the curvature of the groove
roots. Such an experiment was carried out on a copper
tricrystal. For the line tension of the grain boundary
groove root, this yielded clS ffi ð17:0	 7:0Þ � 10�9 J=m
and, for the grain boundary triple junction, this yielded
cl ¼ ð6:0	 3:0Þ � 10�9 J=m [16]. Moreover, a more de-
tailed thermodynamic analysis shows that the triple line
and the grain boundary free surface energy are positive
under equilibrium conditions.
3. Triple line contribution to the driving force for grain
growth

It is obvious that the driving force for grain growth
contributed by grain boundary triple junctions can be
expressed as

P tj ¼
X

i

Li 
 cl
i ð8Þ

where Li is the total length per unit volume of boundary
triple junctions with line energy (line tension) cl

i .
As shown in Ref. [17] for a uniform triple junction

model, i.e., all triple junctions are of equal energy cl,
the total length �Ltj per unit volume is

�Ltj ffi
36

phDi2
ð9Þ

where hDi is the mean grain diameter.
Then the driving force exerted by grain boundary tri-

ple junctions P tj is equal to

P tj ¼
36cl

phD2i
ð10Þ
However, the driving force for continuous grain growth
due to grain boundary curvature 1/R reads

P b ¼
2cb

hRi �
2cb

hDi ð11Þ

where one assumes R � hDi.
The total driving force from grain boundaries and tri-

ple junctions reads

P ¼ 2cb

hDi þ
36cl

phD2i
ð12Þ

The ratio
P tj

P b
¼ 18cl

pcb
¼ a defines the grain size for which the

grain boundary and triple junction contribution to the
driving force are equal. Apparently, in a polycrystal with
mean grain size smaller than a, the triple line energy is
larger than the grain boundary excess energy. To evalu-
ate the magnitude of a, one needs to know the line ten-
sion of the grain boundary triple junction (see previous
section).

For a random triple line in polycrystalline Cu, mea-
surements rendered cl � 6:0� 10�9 J=m. Taking cb �
0:6 J=m2 for the grain boundary surface tension in Cu,
one arrives at a � 55 nm. In other words, up to a mean
grain size of �55 nm, the driving force stemming from
triple junctions is larger than that of the boundaries.
As a consequence, a correct examination of grain growth
in nanocrystalline materials, at least up to a mean grain
size equal to a, cannot be performed if the driving force
of triple junctions is not taken into account.
4. Macroscopic description of grain growth in nanocrys-
talline materials

On the basis of Eqs. (3) and (11), the kinetic equation
of grain growth can be written as

dhDi
dt
¼

mb
2cb
hDi þ

36cl

phDi2

� �
1þ mb

mtjhDi þ
mb

mqphD2i
ð13Þ

After integration, one arrives at:

1

2
hD2i � hD2

0i

 �

þ mb

mtj
� a

� �
ðhDi � hD0iÞ

þ a2 � mb

mtj
aþ mb

mqp

� �
ln
hDi þ a
hD0i þ a

¼ 2cbmbt ð14Þ

One can see that, for a! 0, Eq. (14) transforms into Eq. (4).
The classical relation without junction and drag ef-

fects reads

1

2
hD2i � hD2

0i

 �

¼ 2cbmbt ð15Þ

If no drag but the junction line energy is taken into ac-
count, one obtains

1

2
hD2i � hD2

0i

 �

� aðhDi � hD0iÞ þ a2 ln
hDi þ a
hD0i þ a

¼ 2cbmbt ð16Þ
The junction drag decreases dramatically with progress-
ing grain growth (see curve for Eq. (4)). It is obvious
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Figure 2. Grain growth in nanocrystalline Pd [18]. The triangles
represent the experimental results. The designations for different
approximations, Eq. (4) and Eq. (14), take the influence of the
triple junctions and the quadruple points into account, in contrast to �
Eq. (15) and + Eq. (16), where the drag effect of the junctions was
neglected.
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that the additional driving force due to triple junctions
dramatically speeds up grain growth in agreement with
experimental results.

This description was applied to the experimental data
of grain growth in nanocrystalline Pd [18]. The values of
grain boundary mobility and surface tension given in
Ref. [18] were used. The mobility of triple junctions
and quadruple points were roughly estimated from the
experimental curve. The mobility of the quadruple
points mqp was about 2:4� 10�6 m2=Js, derived from
the first experimental points (Fig. 2) using Eq. (14)
and assuming that 1

Ktj
¼ mb

mtjhDi � 0. The mobility of the

triple junction mtj � 1:5� 10�14 m3=Js was extracted
using the experimental points in the midsection of the
experimental curve, where the drag effect stems mostly
from the triple junctions. Unfortunately, the triple junc-
tion line tension for Pd is unknown. Instead, the mea-
sured value for Cu were used, assuming that the ratio
cl=cb may be considered as constant.

The computed results are presented in Figure 2. Evi-
dently, if the triple junction drag is not taken into ac-
count, the rate of grain growth is extremely high
(Fig. 2, Eqs. (15) and (16)), which is not surprising for
such a small grain size.
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