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Triple junction effects in solids
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Abstract

The grain boundary–free surface triple line tension and grain boundary triple line tension were investigated in copper using a recently
introduced novel approach. The effect of triple line tension on grain growth, Zener drag and Gibbs–Thompson relation was studied. The
results showed that the triple line tension has a considerable effect on grain growth, particle–boundary interactions and void shape, espe-
cially for nanocrystalline materials.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The term “triple line” identifies the intersection of three
interfaces, either external interfaces or internal interfaces of
bulk materials. Triple lines are differentiated based on the
interfaces that are intersecting, e.g. three phase boundaries,
three grain boundaries, or one grain boundary and two
phase boundaries.

One of the earliest studies of triple junctions in materials
was the analysis of a groove formed at the intersection of a
grain boundary with a surface [1]. The fact that grain
boundary motion can be influenced by a thermal groove
[2] is established as textbook knowledge. High-resolution
transmission electron microscopy observations have shown
that the intersection of a grain boundary with a free surface
leads to a reconstruction [3]. This proves the existence of a
driving force, which is likely to be related to the existence
of a grain boundary–free surface line tension [4].

We have recently designed a method to correctly deter-
mine the triple junction line tension [5,6]. The method is
based on the equilibrium of four line tensions at their point
of intersection—the grain boundary triple line and three
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triple lines at the bottom of the thermal grooves of the
merging boundaries. The line tension of the grain bound-
ary–free surface triple lines is determined by comparing
the dihedral angle at the root of a flat and a curved grain
boundary groove.

Grain boundary triple junctions have been recognized
recently to constitute another structural element of poly-
crystals, which can strongly impact microstructural evolu-
tion [7–9]. They open up new opportunities to control
and to design the grain microstructure of fine-grained
and nanocrystalline materials through their effect on recov-
ery, recrystallization and grain growth. Knowledge of the
magnitude of the grain boundary line tension can provide
a quantitative estimate of the contribution of grain bound-
ary triple junctions to the driving force for grain growth. In
this study we will show that the Zener force and the Gibbs–
Thompson relation and related phenomena are also
affected by the triple line energy.
2. Measurement of triple line tension

The fundamental principle underlying the measurement
of triple line tension is the establishment of thermodynamic
equilibrium at the intersection of four triple junctions,
namely three groove root junctions (triple line between
rights reserved.
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Fig. 1. (a) Schematic 3-D view of the line geometry at a triple junction. (b) AFM 3-D view of the line tension equilibrium at a triple junction [6].

Fig. 2. (a) AFM topography measurement on a triple junction of a Cu tricrystal after annealing at 980 �C for 2 h. (b) Profiles along the lines in (a).

γB

γSγS
θ

γB

γSγS
θ

ξξ

(a) (b)

Fig. 3. (a) Grain boundary groove formed at a straight, non-curved grain boundary with no variation in height and (b) grain boundary formed at a flat
grain boundary with a curved groove root [6].

B. Zhao et al. / Acta Materialia 59 (2011) 3510–3518 3511
two crystal surface and a grain boundary) and one triple
junction formed by the intersection of three grain bound-
aries (Fig. 1).

The equilibrium in the z-direction yields

cl
TP ¼ clS

1�2 sin f1�2 þ clS
1�3 sin f1�3 þ clS

2�3 sin f2�3; ð1Þ
where cl

TP and clS
i�j are the grain boundary triple line tension

and the line tension of the triple lines at the bottom of each
thermal groove, respectively. fi�j are the angles at each
groove root of the corresponding grain boundary at the
center of the triple junction (Fig. 2).

Eq. (1) requires the determination of the triple line
tensions of the groove roots clS

i�j. This information can be
retrieved from the curvature of the groove root triple
lines.

Fig. 3a depicts a typical thermal groove formed at a tilt
grain boundary which extends perpendicular to the free
surface. If the orientation of the surface on both sides of



Fig. 4. Top view of AFM topography measurement of a grain boundary groove in a Cu bicrystal after annealing at 980 �C for 2 h.

Fig. 5. (a) Top view of AFM topography measurement on a Cu wire after annealing at 300 �C for 2 h. AFM image step size 7 nm. (b) Profiles parallel to
and across the thin Cu wire.
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the grain boundary is the same and the root of the groove is
straight, the specific grain boundary energy is given by:

cB ¼ 2cS cos
h
2
; ð2Þ

where h is the dihedral angle at the groove root under the
assumption that the grain boundary groove is symmetric,
and cB, cS are the grain boundary tension and the free sur-
face tension, respectively.
The curved groove root in Fig. 3b gives:

cB �
clS

R
¼ 2cS cos

n
2
; ð3Þ

where R is the radius of curvature at a given point of the
groove root. The dihedral angle n has the same meaning
as h but may be different in magnitude owing to the curva-
ture. Combining Eqs. (1) and (2) yields the grain bound-
ary–free surface line tension clS:
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clS ¼ 2cS cos
h
2
� cos

n
2

� �
� R: ð4Þ

The measurement of the angle h was performed on Cu
bicrystals with perfect surface quality [6] Fig. 4.

The dihedral angle h was determined from an atomic
force microsopy (AFM) scan perpendicular to the grain
boundary groove, and was found to be h ¼ 161:0� � 2:3�.
The frequency distribution of the measured dihedral angle
was Gaussian.

Measurement of the angle n (Eq. (3)) is more difficult.
For that, we determined the dihedral angle of the grain
boundary groove on very thin Cu wires, which were grown
by strain control within thin-film cracks [10] Fig. 5. Copper
wire grids were deposited on a silicon substrate, and
annealed at 300 �C in a vacuum furnace for 2 h.

To obtain maximum accuracy, the measurements
were performed with high-aspect-ratio tips (Olympus
AC11160BN-A2) in an atomic force microscope in non-
contact mode. The resolution of these tips was calibrated
with a tip-check sample, and the geometry of the tip was
derived by blind tip reconstruction. According to this cali-
bration, the tip radius was about 10 nm with a slope of 72�.
Therefore the step size of the AFM image of Cu wires was
also chosen to be610 nm for fast and accurate measurement.

The radius of the wire was in the range 80–150 nm. The
dihedral angles of the grooves were in the range 150–157�
depending on the groove curvature. This yielded on average
a line tension of the grain boundary groove root (triple line
grain boundary–free surfaces) clS = (2.5 ± 1.1) � 10�8 J/m.

Based on the assumptions that

1. the free surface energy is independent of orientation,
cS = 1.75 J/m2,

2. the grain boundary–free surface line tension is constant
along the groove root, and

3. all grain boundary–free surface line tensions are the
same, the grain boundary triple line tension in Cu was
determined to be cl

TP ¼ ð6:0� 3:0Þ � 10�9 J=m.

The sign of the grain boundary triple line tension
depends on the grain boundary–free surface line tension,
which is positive under equilibrium conditions. It was dem-
onstrated in Ref. [6] that a negative grain boundary–free
surface line tension would cause the grain boundary–free
surface interface to form a convex bulge which would be
higher than the surface. Therefore a negative grain bound-
ary–free surface line tension and the normal (classical)
shape of a thermal groove system cannot be in equilibrium.
Consequently, the grain boundary triple line tension must
be positive. This is different from the line tension for a spe-
cific system which can undergo a first-order wetting transi-
tion, where the line tension will change sign from negative
to positive values with increasing temperature [11–13].

Pompe et al. [14] found that the line tension of a three-
phase system (solid–liquid–vapor) is of the order of
�2� 10�10 to þ8� 10�11 J/m. The experiments in Ref.
[14] were carried out on hexaethylene glycol, aqueous
CaCl2 solution and water with surface tensions in the range
of (4.5–7.2) � 10–2 J/m2. The measured grain boundary–
free surface line tension in our experiments on Cu
amounted to clS ¼ ð2:5� 1:1Þ � 10�8 J=m and the respec-
tive grain boundary triple line tension was determined to
be cl

TP ¼ ð6:0� 3:0Þ � 10�9 J=m with cS ¼ 1:75 J=m2 obvi-
ously in reasonable agreement with Ref. [14].

3. Impact of triple line tension on grain growth

3.1. Effect of triple junctions on the driving force for grain

growth

It was shown in Refs. [15,16] that the influence of grain
boundary junctions (triple line and quadruple junction in
3-D polycrystals) on grain growth kinetics can be described
in terms of a parameter K. The rate of 3-D grain growth
can be expressed as:

dhDi
dt
¼ mBP

1þ 1
KQP
þ 1

KTP

� � ; ð5Þ

where D is the grain size, and KQP and KTP are the quadru-
ple point and triple junction parameters, respectively [17].
We note that 1

K is a measure of the drag effect of a given
junction on grain growth. However, junctions do not only
exert a drag on grain boundary motion, but also contribute
to the driving force for grain growth due to the junction en-
ergy. The classical equation for the driving force P for con-
tinuous grain growth reads P ¼ 2cB

R . Here, 2/R is the grain
boundary curvature. If, for simplicity, we assume R � hDi,
the total driving force from grain boundaries and triple
junctions reads:

P ¼ 2cB

hDi þ
36cl

TP

phD2i
: ð6Þ

The ratio P TP
P B
¼ 18cl

TP
pcB
¼ a defines the grain size for which

the grain boundary and triple junction contributions to
the driving force are equal. Assuming the measured value
of cl

TP � 6� 10�9 J=m2 for Cu, a constant grain boundary
surface tension of Cu cB ¼ 0:6 J=m2 and a constant ratio
cl

TP=cB, we arrive at a � 55 nm. In other words, up to a
mean grain size of about 55 nm the driving force stemming
from triple junctions is larger than that of the grain bound-
aries. As a consequence, a correct examination of grain
growth in nanocrystalline materials at least up to mean a
grain size a cannot be performed if the driving force of tri-
ple junctions is not taken into account [17].

3.2. Effect of triple line tension on grain boundary–particle

interaction

In 1948 Zener proposed a concept of how the interaction
between a grain boundary and a particle can be estimated
quantitatively [18].
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Fig. 6. Schematic view of a particle intersecting a grain boundary.
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When a spherical solid particle intersects a grain bound-
ary, it replaces part of the grain boundary area, and by
doing so reduces the free energy of the system:

DG ¼ �pr2 � cB; ð7Þ
where G is the Gibbs free energy, cB is the boundary energy,
and r is the radius of the intersected circular area (Fig. 6).

However, this area has to be regenerated when the grain
boundary detaches from the particle. The respective retard-
ing force, i.e. the “Zener force”, is given by:

f ¼ dDG
dr
¼ �2pr � cB; ð8Þ

which retards the motion of the grain boundary.
For the past 60 years all considerations of grain bound-

ary motion and grain growth in solids with both immobile
and mobile particles have been based on this concept, i.e.
the triple line that forms at the intersection of sphere and
boundary was simply disregarded. In Section 2 we showed
that a triple line is a defect in its own right with specific
thermodynamic properties, and that the line tension of a
triple junction can be measured. Hence, such measure-
ments can be utilized to study its effect on particle bound-
ary interaction [19]. Then, Eq. (7) has to be rewritten as:

DG0
I ¼ �pr2 � cB þ 2pr � cBP ; ð9Þ

where cBP is the line tension of the triple junction.
Let us define the coefficient g ¼ cB�R

cBP .
The derivative of Eq. (9) reads:

dDG0
I

du
¼ 2pRcBP sin u � ðg cos u� 1Þ: ð10Þ

For g < 1, DG0
I attains a maximum value at u ¼ 0. When

g > 1, the maximum shifts to cos u ¼ 1
g, and DG0

I assumes
a minimum at u ¼ 0. The sign of DG0

I depends on the par-
ticle radius, as shown in Fig. 7.

From Eq. (9), we obtain the interaction force between
the grain boundary and the particle:

F � ¼ �2pr � cB þ 2pcBP ð11Þ
At the critical particle size R� ¼ cBP

cB
, f* changes sign.

Hence, for R < R* the particle will not attach to the grain
boundary. When the particle radius is larger than R*, and
u < arccos 1
g, the grain boundary would intersect the parti-

cle, and f* becomes a retarding force for grain boundary
motion.

In Cu, cB ¼ 0:6 J=m2, and if we assume cBP � clS ¼
ð2:5� 1:1Þ � 10�8 J=m, the critical size R* is about 40 nm;
if we take the value cBP � cl

TP ¼ ð6:0� 3:0Þ � 10�9 J=m,
the critical size R* is about 10 nm. According to Fig 7,
DG0

I > 0 for R < R* and increases with growing area of
intersection. The minimum value of DG0

I is obtained at
u ¼ �90�, therefore the particle will not attach to the grain
boundary at all. When R > R*, a further minimum of
DG0

I ðuÞ appears at u ¼ 0�. On the other hand, the impact
of the triple junction on particle–boundary interaction
brings about the formation of an energy barrier. This bar-
rier can only be overcome with the help of an external driv-
ing force, as follows:

DGI ¼ �pr2 � cB þ 2pr � cBP � PV : ð12Þ
The external driving force P will expend a work propor-

tional to the swept volume V. The energy barrier still exists,
but the grain boundary will become curved under the driv-
ing force. If we assume that the radius of the curved grain
boundary is equal to the radius of the particle, the change
in the system energy DGC due to the curved grain boundary
reads:
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DGC ¼ �pr2 � cB þ 2pRh � cB � PV : ð13Þ
Fig. 8 gives an example of the dependencies DGI(u) and

DGC(u) for R = 30 nm, P = 25 MPa. Accordingly, the
grain boundary will first circumvent the particle (energy
curve DGC, broken line in Fig. 8) until the angle u� is
reached. Then it will intersect the particle (energy curve
DGI, thick solid profile in Fig. 8). The angle u� and the crit-
ical driving force for the process are:

u� ¼ arcsin
1� g2

1þ g2
ð14Þ

P crit ¼
ð1þ g2ÞcB

g2R
ð15Þ

A detailed derivation is given in the Appendix A.
When the driving force P > Pcrit, the grain boundary can

pass the particle, and the interaction force is given by Eq.
(11). The maximum interaction force f �max ¼ f �ðRÞ does
not depend on the driving force.

In other words, a particle cannot cross a grain boundary
spontaneously, but a certain driving force needs to be
applied to the grain boundary to overcome the barrier. In
the course of the process, the grain boundary first becomes
curved and eventually will pass the particle.

So far we have assumed that the particle is immobile. In
the following we will dwell on the interaction between mov-
ing grain boundary and mobile particles [15,20–23]. Since
the mobility of a second-phase particle strongly depends
on its size, the problem becomes particularly important
for fine-grained and nanocrystalline materials. In Ref.
[23] this problem was considered in the framework of the
Zener approach for steady-state motion of the boundary–
particle system. The latter assumes that the shape of a par-
ticle which moves together with a grain boundary changes
with the velocity of their joint motion. It is of interest to
evaluate the size of such a particle. For joint motion, the
velocity of a particle and grain boundary have to be equal:

vB ¼ vP ; ð16Þ
where vB ¼ 2mBcB
hDi=2

, and mB, cB and hDi are the reduced bound-

ary mobility, grain boundary surface tension and mean grain

size, respectively. The particle velocity vP ¼ mPpr ¼ 1
10
� DsbXa

kT �R4

pRcB [15], where Ds, b, Xa and R are the interface diffusion
coefficient, lattice constant, atomic volume and particle ra-
dius, respectively. For a Cu polycrystal with hDi � 10

lm ¼ 10�5 m at 937 K, cB ¼ 0:6 J=m2, Ds � 10�13 m2=s,

b ¼ 3 � 10�10 m and Xa ¼ 10�5 m3=mol, the radius R of a
particle moving together with a grain boundary is in the

range 1–2 nm. For R � 2 nm, g ¼ cB�R
cBP < 1 and the critical

driving force P for the grain boundary motion which is nec-
essary to permit a second-phase particle to intersect the grain
boundary is given by Eq. (15), with parameters

cB ¼ 0:6 J=m2, cBP � cl
TP ¼ 6� 10�9 J=m, R � 2� 10�9 m

and P crit ¼ 7:7� 109 J=m3. This value is four orders of mag-
nitude larger than the capillary driving force! Even for a
mean grain size < D >� 20 nm the critical driving force
P crit is larger than the driving force for grain growth. In other
words, the motion of a 2–3 nm particle adsorbed to the mov-
ing grain boundary according to the Zener model under a
capillary driving force is impossible [23].

3.3. Effect of triple line tension on the Gibbs–Thompson

relation

Let us consider the shape of a void at a grain boundary in a
polycrystal. For homogeneous materials the contact angle h
is constant, and the equilibrium surface will constitute a sur-
face of rotation [18,19] (Fig. 9). Owing to the symmetry of the
problem, the free energy of the system can be expressed as:

DG ¼
Z y1

y0

4px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p� �
dy � cS � px2

0cB þ 2px0c
lS ; ð17Þ

where cS is the free surface energy, cB is the grain boundary
energy and clS is the grain boundary–free surface triple line
tension.

Since the volume of the void V is constant:

V ¼ 2

Z y1

y0

px2dy ¼ const; ð18Þ

the problem can be reduced to the isoperimetric problem of
calculus of variations:

J ¼
Z y1

y0

4pxcS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
þ 2kpx2

� �
dy � �px2

0cB þ 2px0c
lS :

ð19Þ
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The extrema of the function J correspond to the extrema
of the function xðyÞ, i.e. the shape of the void, in accor-
dance with the Euler equation:

U� x0Ux0 ¼ C1 ð20Þ
and the transverse conditions:

�Ux0 þ
@U
@x0

����
����
y¼y0

¼ 0; ð21Þ

jU� Ux0 � x0jy¼y1
¼ 0; ð21

0 Þ

where U ¼ 4pxcS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02
p

þ 2kpx2 and U ¼ �px2
0cBþ

2px0clS .
The first transverse condition gives us the relation for

the contact angle h:

cos h ¼ cB

2cS
� clS

2x0cS
; ð22Þ

while relation (210) defines the slope of the curve xðyÞ at the
point ðx1; y1Þ:
x0ðy1Þ ! 1 ð23Þ

It follows from Eq. (22) that the triple line tension
reduces the wetting of the void at a grain boundary. If
the surface tension cS is isotropic, the void is represented
by a lenticular body which is bordered by two spherical
surfaces (Eq. (21)).

With respect to V and R, we obtain (Fig. 9):

V ¼ 2

Z y1

y0

px2dy

¼ 2 � pR2

3
ð1� cos hÞ2½3R� Rð1� cos hÞ	 ¼ Const: ð24Þ

R ¼ 3V

2ð1� cos hÞ2ð2þ cos hÞ

" #1=3

ð25Þ

DG ¼ 4pR2ð1� cos hÞ � cS � pR2 sin2 h � cB þ 2pR sin h � clS :

ð26Þ
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Let us consider the behavior of a void at a grain boundary in
Cu (cS ¼ 1:75 J=m2, cB ¼ 0:6 J=m2, clS ¼ ð2:5� 1:1Þ � 10�8

J=m2). The relation between hjDG min and void radius R is
given in Fig. 10. The void will not attach to the grain bound-
ary when R < 40 nm. With increasing R, the angle h tends to
become constant: hC ¼ arccos cB

2cS
.

The difference between the pressure inside and outside of
the void can be found from classical considerations: a sys-
tem of constant volume V is subdivided by a curved surface
with surface tension cS into two parts V 1 and V 2. In our
case the intersection of the curved surface with the grain
boundary also forms an additional structural element, the
triple line grain boundary–free surface. The change in the
free energy F then reads:

dF ¼ p1dV 1 � p2dV 2 þ cSdAþ clSdL; ð27Þ
where A is the surface area and L is the length of the triple
line, respectively. In equilibrium (dF ¼ 0) we arrive at:

Dp ¼ cS
dA
dV
þ clS dL

dV
: ð28Þ

The first term on the right-hand side equals cS
1

R1
þ 1

R2

� �
,

where R1 and R2 are the principal radii of curvature; for a

spherical void the term reduces to 2cS
R . The second term on

the right-hand side can be given by clS dL
dV ¼

clS sin h
2R2 . Fig. 10

gives the equilibrium of the system (hDGmin
) as a function

of the void radius R in Cu. Up to R � 200 nm,
sin h > 0:99, i.e. Eq. (28) can be expressed to a good
approximation as:

Dp ¼ 2cB

R
þ clS

2R2
: ð29Þ

Eq. (29) defines the equilibrium concentration of vacan-
cies in the vicinity of a void at the grain boundary:

cV ¼ c0
v exp

X
kT

2cB

R
þ clS

2R2

� �� 	
; ð30Þ

where c0
V is the vacancy concentration far away from the

void, and X is the atomic volume.
In Cu, in accordance with our measurements of grain

boundary–free surface line tension cB ¼ 0:6 J=m2, clS ¼
ð2:5� 1:1Þ � 10�8 J=m2. For R � 20 nm the terms 2cB

R and
clS

2R2 are of the same magnitude. Hence, the influence of the

grain boundary–free surface line tension will make itself
felt in nanoscale microstructures.

3.4. Effect of the sign of the triple line tension

Of particular interest is the problem of the sign of the
triple line tension. As shown with good accuracy in Ref.
[6], the measured value of the triple line tension in bicrys-
tals and tricrystals is positive. However, there are no phys-
ical restrictions preventing the triple line tension from
being negative [6,24,25]. As can be seen from Eq. (6), a neg-
ative line tension of the grain boundary triple line decreases
the driving force for grain growth and, as a consequence,
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stabilizes the grain microstructure: when the line tension
“second-phase particle–grain boundary” is negative, the
interaction between particle and the grain boundary com-
plies with the Zener approach for all particle sizes (9). If
a void is formed at the grain boundary with negative value
of clS it remains stable and even has to a certain extent the
capability to grow (Eqs. (22), (30)). It is most likely that
this factor is one reason for the abnormal stability of small
voids in nanocrystalline materials [26].

4. Summary

In this study we investigated the effect of triple junctions
on a variety of metallurgical phenomena.

1. We detailed how to correctly determine the triple line
tension. For Cu, we obtained a tension for the triple line
at a groove root of clS ¼ ð2:5� 1:1Þ � 10�8 J=m, and for
the triple line at the intersection of three boundaries
cl

TP ¼ ð6:0� 3:0Þ � 10�9 J=m .
2. It was shown that taking into account the grain boundary

triple line energy changes fundamentally our understand-
ing of the physics of grain boundary motion and grain
growth in nanocrystalline and fine-grained materials,
especially in materials with second-phase particles and
voids.

3. It was shown that, at least up to a mean grain size of
D � 18cL

TP
pcB

(in Cu D � 55nm for D � R), the triple line
energy has to be taken into account when calculating
the driving force for grain growth in nanocrystalline
materials.

4. Based on conditions of thermodynamic equilibrium, the
Zener force and the Gibbs–Thompson relation were revis-
ited and modified. To account for the impact of junctions
that formed at the intersection of a particle or a void with
a grain boundary, we demonstrated that the effect of triple
line energy prevents a grain boundary to wet particles and
voids if these are smaller than 20–40 nm (in Cu).
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Appendix A

The energy change of a system as the grain boundary
intersects a particle is:

DG0
I ¼ �pr2 � cB þ 2pr � cBP ðA1Þ

The energy change of the system as the grain boundary cir-
cumvents the particle is:
DG0
C ¼ �pr2 � cB þ 2pRh � cB ðA2Þ

Under a constant driving force P:

DGI ¼ �pr2 � cB þ 2pr � cBP � PV ðA3Þ
DGC ¼ �pr2 � cB þ 2pRh � cB � PV ðA4Þ
as

r ¼ R cos u

h ¼ Rð1þ sin uÞ

V ¼ ph2ðR� h=3Þ ¼ pR3

3
ð1þ sin uÞ2ð2� sin uÞ

ðA5Þ

this yields:

DGI ¼ � pR2 cos2 u � cB þ 2pR cos u � cBP

� P � pR3

3
ð1þ sin uÞ2ð2� sin uÞ ðA6Þ

DGC ¼ � pR2 cos2 u � cB þ 2pR2ð1þ sin uÞ � cB

� P � pR3

3
ð1þ sin uÞ2ð2� sin uÞ ðA7Þ

When DGC min < 0, the particle can be encircled by the
grain boundary. uC min is the position, where DGC has the
minimum value.

dDGC

du

����
u¼uC min

¼ ðpR2 cos uð1þ sin uÞ½2cB

� P � Rð1� sin uÞ	Þju¼uC min
¼ 0 ðA8Þ

uC min ¼ arcsin 1� 2cB

PR

� �
ðA9Þ

DGCðu ¼ uC minÞ

¼ pR2ð1þ sin uÞ2 cB � P � R
3
ð2� sin uÞ

� 	� �
ju¼uC min

< 0:

ðA10Þ

P � >
cB

R
ðA11Þ

P* is the minimum driving force that gets the grain bound-
ary curved by the particle.

The critical angle u�, where the grain boundary–particle
interaction changes from circumvention to intersection of
the particle, is at ðDGI ¼ DGCÞju¼u� :

2pR cos u� � cBP ¼ 2pR2ð1þ sin u�Þ � cB ðA12Þ
Defining the dimensionless coefficient g ¼ cB�R

cBP :

u� ¼ arcsin
1� g2

1þ g2
ðA13Þ

When uC min is smaller than u�, the boundary will only
bend around the particle. An intersection of the grain
boundary with the particle requires u� 6 uC min. Hence,
the driving force P should be:

P P P crit ¼
2cB

Rð1� sin u�Þ ¼
ð1þ g2ÞcB

g2R
ðA14Þ
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