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Abstract

The effect of a finite triple junction mobility on the growth rate of two-dimensional polycrystals is studied by means of computer sim-
ulations. The equations that describe this effect are derived on the basis of the von Neumann—-Mullins equation. The derived equations
are compared to network-model computer simulations and show a good agreement. An analysis of the grain growth kinetics points out
that the effect of the initial topology prior to the onset of grain growth is stronger than previously thought. This indicates as well that
grain growth controlled by triple junctions cannot be estimated only from the kinetics.
© 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Grain growth occurs as a necessity of a polycrystal to
minimize its free energy through the elimination of grain
boundary area. The grain boundaries provide, conse-
quently, the driving force for their own motion. Never-
theless, during grain growth other structural elements
are also involved, namely triple lines and quadruple junc-
tions. Evidently, grain growth entails the concomitant
motion of all of these structural elements. Most theories
on grain growth assume that triple lines and quadruple
junctions do not influence the motion of the grain bound-
aries. However, this may not be the case, since in several
recent investigations [1-5] it has been effectively shown
that these elements can have kinetics different from the
grain boundaries and thus, drag grain boundary motion
and consequently affect grain growth. Since a polycrystal
is a connected network of grain boundaries and their
junctions, the elements with the slowest migration rate
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will govern grain growth kinetics. Slower Kkinetics is
equivalent to a lower effective driving force. Since the
driving force is reflected by grain boundary curvature,
its change is accompanied by a variation of the dihedral
angle 0 and turning angle  (=n — 0) at grain boundary
junctions and its dependency on the mobilities of the dif-
ferent structural elements. Since most of the theories on
grain growth assume a dihedral angle of 120° at triple
junctions of two-dimensional (2-D) grain structures, they
fail to predict accurately the grain growth evolution in
the case of a finite mobility of the boundary junctions.
There have been a few attempts in the literature to cor-
rect this. For instance, Gottstein and Shvindlerman [6]
modified the von Neumann-Mullins relation to consider
the effect of a finite triple line mobility. In their approach,
they consider that the dihedral angle of grains with less
than six grain boundaries (n <6) will tend to 0°, while
the dihedral angle for grains with more than six grain
boundaries will tend to 90° for very slow triple junction
kinetics. In the present paper, this approach is first criti-
cally reviewed. Subsequently, 2-D network model simula-
tions are performed to corroborate the theoretical model
presented here.
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2. Triple junctions and a first approach to the von Neumann—
Mullins relation

The study of the kinetic properties of a system with tri-
ple junctions is only possible in the course of steady-state
motion. However, the steady-state motion can be achieved
only in those granular arrangements whose geometry pro-
vides an independency of the driving force on time. In
Fig. 1, two geometrical configurations that allow a
steady-state motion of their triple junctions are shown. It
is possible to derive the equations of motion for the grain
boundaries and triple junctions from the geometry of these
grain arrangements and thus to determine the effect of a
finite triple junction mobility on the evolution of the system
[5].

The influence of the triple junction is expressed by a
dimensionless parameter A,; in terms of the change of the
dihedral 6 and turning f angles. For the configuration
shown in Fig. la, 4,; reads:

S (1)

"~ mg  2cosi—1 _2cos%—l

o mya - 0
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and for the grain system shown in Fig. 1b:
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where m,; and my, are the triple junction and grain bound-
ary mobilities, respectively. The dimensions xy and «a are
shown in Fig. 1. It is possible to substitute x, in Eq. (2)
by the distance a between triple junctions since the function
for the shape of the grain boundary is known and given by

[7]:
y(x) =

arccos ¢ " (3)
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Fig. 1. Special geometrical grain arrangements that allow the steady-state
motion of the grain boundaries and triple junctions.

For x = xy, y = a/2 and by substituting these values in Eq.
(3) xg can be expressed as a function of ¢ and f:

alnsin f§

X0= — 5y 4)
2(3-B)
Finally, substitution of Eq. (4) in Eq. (2) yields:
; 2(2 — 2(0 -2
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It is obvious from Egs. (1) and (5) that the triple junc-
tions are able to drag the motion of the adjoining grain
boundaries [5] upon change of the turning angle and thus
of the dimensionless parameter A,. Since the dependency
A,(p) is known, it is possible to formulate an equation
for the growth rate of grains affected by triple junction
drag. The von Neumann—Mullins relationship [8] states
that the area (S) rate of change of any 2-D grain is propor-
tional to the grain boundary energy y, mobility m,;, and the
curvature of its grain boundaries:

B mnan - np) ©
In Ref. [6], Gottstein and Shvindlerman classified the
problem into two categories according to the topological
class n of the grains and derived equations for the growth
rate of grains with » <6 and n > 6. For this, they used a
series expansion of Egs. (1) and (2) in the neighborhood
of /3 and solved for B to arrive at [6]:
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As expected, these equations show good agreement for
large values of A, [6] but cannot predict accurately the
growth rate of grains with small A,;. The good agreement
for large A,; owes to the fact that independent of the topo-
logical class the turning angle of a grain will tend to =/3 for
A,;> 1. In turn, the approach is bound to fail for small
values of A,; because the turning angle for 4,; — 0 depends
on the topological class n since polygonal grains will have
different contact angles depending on their number of
sides. This case was not considered in the derivation of
Egs. (7a) and (7b). In the following sections, we propose
two different approaches that consider this dependency
and seem to describe correctly the growth rate of a grain
for all values of 4,;.

3. Growth rate of a grain in a polycrystal with finite mobility
of the triple junctions: a polygonal approach

A finite mobility of the boundary junctions causes, dur-
ing grain growth, a flattening of the grain boundaries as a
necessity to reduce their driving force and allow the system
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to evolve with the kinetics that guarantee the concomitant
motion of all structural elements of the microstructure and,
at the same time, a maximal minimization rate of the free
energy. Since the configurations shown in Fig. 1 have a
very particular geometry, it is possible to determine exactly
the influence of the triple junctions on the curvature of the
grain boundaries. However, such geometries are unlikely to
be found in polycrystals and therefore their applicability is
limited to very controlled experiments. To overcome this
difficulty we propose the geometry of an n-sided grain
shown in Fig. 2.

For the geometry shown in Fig. 2 the velocity of the tri-
ple junction can be calculated from the equilibrium of
forces at the triple junctions. With the assumption that
the grain boundary energy is homogeneous and constant,
the net force exerted on the junction reads:

P=y2cos¢p—1) (8)
and correspondingly, the velocity of the triple junction is
given by:

vy =myy(2cosp — 1) 9)
where ¢ is half the dihedral angle (Fig. 2). In turn, the
velocity of the grain boundary follows the fundamental
equation:

Vgh = Mg YK (10)
where k is the curvature of the grain boundary. Consider-

ing the grain boundaries as circular arcs the curvature can

be calculated as:
1 2sina

K=—=
r a

(11)

Evidently, the curvature depends on the length «
between triple junctions. It can be noticed that the param-
eter a has the same physical meaning as in Fig. 1, i.e. the

a

< r(1=2/mpf.

Fig. 2. Geometry of an n-sided grain used for the derivation of the
equations of motion.

magnitude of the driving force. In order to equate the
velocities of the triple junction and the grain boundaries
(necessary condition for a concomitant motion), the grain
boundary velocity has to be projected onto the direction
of motion of the triple junction. This projected velocity
vgp Of the grain boundary reads:

2mygpy Si .
Vgp = 7SN i (12)
' a

Equating both velocities leads to the parameter A,

mya  2sinosin @
Ay = =

e 13
mg,  2cosp —1 (13)

This equation can as well be expressed in terms of either
the dihedral angle 6 or the turning angle . For conve-
nience from now on, we will use only the expressions for
p since this angle can be substituted directly in Eq. (6).
Eq. (13) can then be rewritten as:

; sin (2) —sin (f — 2

A[j:M: (n)l . (ﬁ n) (14)
Mg 2sin () — 1

This approach seems to be fully consistent with our
understanding of grain boundary junctions in polycrystals
since, as in the case for the simpler configurations shown in
Fig. 1, when f — n/3 A,; — oo and in turn, when the angle
p — 2n/n (for flat grain boundaries) then A,; — 0. The first
case corresponds to perfectly grain-boundary-controlled
motion whereas the second relates to perfectly triple-junc-
tion-controlled motion.

In order to modify the von Neumann—Mullins relation-
ship [8] (Eq. (6)), it is necessary to solve Eq. (14) for 5. In
contrast to Egs. (1) and (2) which seem not to have an ana-
Iytical solution, Eq. (14) can be solved analytically. How-
ever, the solution is very lengthy, and thus it will not be
presented here. Nevertheless, in a subsequent section we
will show by means of network model simulations that this
approach can be used to predict the growth rate of grains
with different topological classes.

For 2-D grains the von Neumann—Mullins equation can
be used to calculate the growth rate of grains for ideal con-
ditions, i.e. mg, and y are assumed constant. The von Neu-
mann-Mullins relation predicts that the growth rate of a 2-
D grain depends exclusively on the topological class. How-
ever, if ideal conditions are inexistent then the growth rate
will depend as well on the turning angle, see Eq. (6). For
our analysis, we need an equation for the 2-D growth rate
with consideration of the finite mobility of the triple junc-
tions. For this we need only a combination of Eq. (6) and
the solution of Eq. (14) for the turning angle p.

4. 2-D network model simulations

Various models have been used for the simulation of
grain boundary migration and related phenomena, in par-
ticular grain growth and recrystallization: notably Monte
Carlo [9-12], phase field [13,14] and network models [15-
19]. However, models based on cellular automata [20,21],
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finite elements [22], and molecular dynamics [23] can also
be found in the literature. Among them, the network mod-
els stand out for the clarity of the physics used for the
description of grain boundary migration. The deterministic
character of these models allows an easy implementation of
a finite boundary-junction mobility [18,24-26]. The imple-
mentation of the model utilized in this study is described
elsewhere [18,26]. This model has been tested by simula-
tions of diverse phenomena involving grain boundary
migration [24,25] including 2-D grain growth in polycrys-
tals with finite mobility of the boundary junctions [25]. In
the following section, we will first show that the simulation
model is able to correctly simulate grain growth in the con-
figuration depicted in Fig. 1b, and then we will utilize the
simulation model to study the polycrystalline case.

4.1. Steady-state and non-steady-state grain boundary
motion

In order to analyze the accuracy of the model, we repro-
duced the geometry of the grain arrangement shown in
Fig. 1b in computer simulations (Fig. 3). In these simula-
tions the grain boundary energy and mobility were kept
constant whereas the triple junction mobility was varied
in order to establish different kinetic regimes. The turning
angle f5, area, and growth rate of the central grain (grain
1 in Fig. 3) were recorded during the whole simulation.

The accuracy of the turning angle can be easily deter-
mined because Eq. (5) is the exact solution for the param-
eter A, as a function of f and a. Since a is constant the
effect of A,; can be singled out. As expected, the grain
boundaries tend to flatten for decreasing 4,; a comparison
of Eq. (5) with the mean value of the angle recorded during
the simulation renders excellent agreement (Fig. 4). Large
deviations of the measured values observed for A, > 1
can be explained by the fact that the angles shown in
Fig. 4 correspond to the mean value, which includes as well
the values of the turning angle during and before relaxa-
tion. Evidently, the turning angle of the starting configura-

tion (7/2) is further away from the equilibrium angles for
A,;> 1 than from the turning angles for A,; <1.

More important is to determine the accuracy of the
growth rate of the central grain in Fig. 3 since this param-
eter will be used for analysis of the polycrystal simulations.
In Fig. 3 any grain of the arrangement corresponds to a
four-sided grain with an open boundary on the right side;
for this reason, the growth rate of any grain can be calcu-
lated by applying Eq. (6) as follows:

(21 — 4B) = my,(2B — ) (15)

The only unknown variable in this equation is the turn-
ing angle 8 but it can be numerically calculated for any A,
using Eqgs. (5) and substituted into Egs. (15) and (16). Con-
sequently, the area S of a grain varies as function of time
as:

S =S80+ muy2p—m)-t (16)

_mgb’y

Sg =

where S is the initial area, and ¢ is the time. In Fig. 5 the
simulated area change with time is compared to the one
calculated with Egs. (16) and (5) for different values of
A,; corresponding to the three different kinetic regimes,
i.e. grain boundary kinetics (A, >> 1), transition kinetics
(A5~1) and triple junction kinetics (A, < 1). Despite
some minor deviations, good agreement can be observed
for different values of A,; in the three regimes. A more com-
prehensive comparison can be seen in Fig. 6, where Eq. (15)
is plotted along with the simulation results for the growth
rate of the central grain in Fig. 3 in dependency of 4.
From the previous results it is obvious that the simula-
tion model can predict correctly the behavior of a grain
assembly evolving in steady state and under the influence
of a finite mobility of the triple junctions. However, it is
not clear whether the model or the approaches described
in the previous sections can reproduce the features of grain
growth since in this phenomenon, the driving force is not
constant and therefore the grains do not evolve in steady
state. To evaluate the simulation model and the various
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Fig. 3. (a) Grain configuration used for the simulations of the configuration shown in Fig. 1b at time #, and (b) after relaxation, when steady-state motion

occurs.
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Fig. 6. Comparison of the simulated growth rate of the central grain in
Fig. 6 with the analytically calculated rate (Eq. (15)).

introduced approaches, we carried out simple simulations
using a four-sided grain, as depicted in Fig. 7, under the

(c)

(b)

(@)

Fig. 7. Four-sided grain used to validate the polygonal approach. Since
the size of the grain decreases with time, A,; changes as well. For this
reason, the grain boundaries of the grain experience a flattening with
decreasing grain size. Evidently, the grain boundaries of the grain in (a)
are more prominently curved than the grain boundaries in (b and c).

influence of a finite triple junction mobility. The results
for the growth rate of the grain were compared with the
original (Eq. (7a)) and polygonal (Eq. (14)) approaches
for the prediction of the growth rate.

The shape of a four-sided grain after different simulation
times is depicted in Fig. 7. It can be noticed that the dihe-
dral angle at the triple junctions decreases with decreasing
grain size. This occurs because A,; decreases linearly with
grain size (through the distance between vertices a in Eq.
(14)) and thus affects dynamically the evolution of the
grain. The system has, therefore, to adapt its driving force
by flattening the grain boundaries due to the kinetic con-
straints imposed by the triple junctions.

Since the grain size decreases continually, it is possible
to evaluate with one simulation the whole interval of A,
Evidently, the growth rate of the grain depends on time
as the finite triple junction mobility influences the kinetic
equilibrium of the grain surface. Nevertheless, the growth
rate can be evaluated independently of time if only its
dependency of A, is considered. In Fig. 8 the growth rates
obtained from the simulations (open circles) are compared
to the different predictions. Notably, the polygonal
approach delivers the best agreement with the simulations.
The original approach agrees with the simulations only for
A, > 1, as expected from its respective assumptions.

4.2. Polycrystal simulations

Since the simulation model predicts accurately the
growth rate of grains in simple simulation setups it qualifies
for a simulation of polycrystals with consideration of a
finite triple junction mobility. Since the grain size increases
with time, it is possible to evaluate a range of A,; depending
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Fig. 8. Comparison of the different approaches with the growth rate of the
four-sided grain shown in the figure. The polygonal approach shows a
good agreement for the whole interval of A, whereas the original
equation shows good agreement only for 4, > 1.

on the initial grain size and/or triple junction mobility. In
order to cover a broad range of 4, three simulations were
carried out with different initial triple junction mobilities.
All other simulation parameters (7, 11,,) were kept constant
for all tests. As the grains change their size constantly and
therefore alter the value of A,, it was necessary to keep
continuous track of their geometrical properties, growth
rate and A,. The parameter a for the calculation of A,
was taken as the mean distance between vertices of a grain
(Egs. (1) and (14)). Experimentally, a can be extracted from
the grain size through the perimeter p since a ~ p/n for the
calculation of A,. This was not necessary in these simula-
tions as all the required geometrical information was
available.

The results of the simulations are summarized in Figs. 9
and 10 for grains with n < 6 and n > 6, respectively. The
respective growth rates of grains for a specific topological
class are compared to the previously introduced theoretical
predictions for changing 4,. As in the simulation of the
four-sided grain, in general, the polygonal approach seems
to predict the growth rate of 2-D grains reasonably well.
The original approach matches the simulations for 4,; > 1
according to its setup.

The growth rates for grains with n =6 (Fig. 9d) repre-
sent a special case since both the original and the polygonal
approaches assume a zero growth rate for grains within this
class. This assumption is based on the false premise that
six-sided grains have straight grain boundaries and thus
they are not affected by a finite triple junction mobility.
For the polygonal approach, there is no alternative since
the grains are assumed to be regular polygons with curved
faces, in which case the six-sided grain will have straight
grain boundaries. However, in reality, once a six-sided
grain assumes an irregular non-equiangular shape the grain
boundaries have to become curved in order to establish the
equilibrium at the triple junctions. If the triple junctions
additionally promote a flattening of the grain boundaries

then most of the non-equiangular six-sided grains will
shrink since dihedral angles larger than 120° (a dihedral
angle larger than 180° is physically impossible for isotropic
y) contribute only marginally to the growth of the grains
whereas dihedral angles smaller than 120° induce a rapid
shrinking of the grain in order to attain equilibrium at
the triple junctions. Fig. 9d substantiates that most of the
measurements for n = 6 lie below the zero growth rate line.

We can conclude that for a hypothetical purely triple-
junction-controlled grain growth (i.e. perfectly flat grain
boundaries), the condition for zero growth will depend
not only on the topological class (n = 6) but also on the
shape of the grain since only hexagonal equiangular grains
have dihedral angles equal to 120°. In general, the von
Neumann—Mullins equation (Eq. (6)) predicts that any
grain that fulfills 8 = 2xn/n will have a zero growth rate, a
condition which is met by equiangular polygons. Neverthe-
less, even if the grains can assume this shape, they cannot
have a zero growth rate unless they are hexagonal and
equiangular because the grain boundaries of grains with
n # 6 will have contact angles different from 120°, and this
will ultimately drive their motion. For practical purposes, it
can be said that for purely triple-junction-controlled grain
growth there is not a unique topological class with zero
growth rate since it is very unlikely that all six-sided grains
in a real microstructure are equiangular. Furthermore, any
topological transformation of an adjacent grain boundary
at the triple junction will disrupt the instant equilibrium.
However, this imposes an additional constraint to the
growth of grains in polycrystals because an equiangular
hexagonal grain cannot grow at all as it experiences no
driving force. This constraint is removed for zero triple-
junction-drag since in this case the triple junctions and
grain boundaries of a six-sided grain might experience a
driving force and move. This is an apparent contradiction
with the von Neumann—Mullins equation but it has to be
noted that this equation explicitly states that the growth
rate of grains does not depend on its shape, which means
that the shape of six-sided grains can and in fact do change
during their evolution while satisfying a zero growth rate.
This eases the occurrence of topological transformations,
which are unlikely to occur smoothly in grain growth con-
trolled exclusively by triple junctions, because equiangular
hexagonal grains are completely static and can evolve only
through topological interactions with neighboring grains.

The results for grains of topological classes n>6
(Fig. 10) only confirm the good agreement of the polygonal
approach with the simulation results. An important con-
clusion from this analysis is that the growth rate of grains
with finite mobility of the triple junctions depends on the
shape of the grain since grains with the same 4,; can have
different growth rates.

4.3. Grain growth kinetics

It is tacitly believed that triple-junction-controlled grain
growth is characterized by a parabolic change of the grain
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Fig. 9. Comparison of the simulated growth rate for grains with n < 6 and the theoretical approaches. A good agreement of the polygonal approach can
be observed. The dots correspond to three simulations with different starting triple junction mobility to achieve a broad range of A4,. For n =3 (a) the
original approach shows a good agreement for A,; > 1; for (b) n = 4 and (c) n = 5 the polygonal approach seems to agree better with the simulation. In (d)
the growth rate for grains with n = 6 shows that these grains tend to shrink in the case of a low 4,;.

area S with time: S~ % in contrast to boundary-con-
trolled grain growth: S~ ¢. Whereas parabolic kinetics
have been confirmed by computer simulations of 2- and
3-D triple-junction-controlled grain growth with the Monte
Carlo—Potts model [27,28], in network model simulations a
growth exponent of m = 1.75 has been typically found [29],
which clearly deviates from the m =1 expected for grain-
boundary-controlled grain growth. Triple junction kinetics
are particularly expected in nanocrystalline materials
because more polycrystal volume is occupied by triple junc-
tions (topologically the most frequent structural element)
and very small values of 4,; can be achieved as the distance
between junctions decreases in proportion to the grain size
[30]. However, we will show that the determination of triple
junction kinetics may not be as simple as previously
thought because the topology of the sample might play a
more dominant role during grain growth.

The average 2-D grain area undergoing ideal grain
growth follows linear kinetics. This is basically a result of

the topological constraints imposed on the polycrystal
[31-33] that force the conservation of a self-similar grain
size distribution. Self-similarity, however, can only be
attained in steady state, but not during the transient from
non-equilibrium structures [27,28]. Whereas the equilib-
rium distributions for triple-junction-affected grain growth
have been recently theoretically determined [28] and vali-
dated by means of computer simulations [27], it still
remains an open question, how a finite triple junction
mobility can affect the attainment of a steady-state micro-
structural development. In order to elucidate this issue, we
performed simulations of grain growth under different con-
ditions: from curvature-controlled to triple-junction-con-
trolled grain growth.

In Fig. 11, the grain growth kinetics for different triple
junction mobilities are plotted. The curves are fitted to
the function (S(7)) — ( S(0)) = k¢, where (S) is the mean
grain area, k is the kinetic constant and m is the grain
growth exponent. The effect of the triple junction mobility
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Fig. 10. Comparison of the theoretical approaches and the simulated growth rate for grains of the topological class (a) n =7, (b) n =38, (¢c) n =9 and (d)

n=10.

on grain growth kinetics is expressed by the grain growth
exponent that tends to unity for increasing triple junction
mobility. It is noted that the values for m are lower than
the grain growth exponent found by Weygand et al. [29]
(m = 1.75), who simulated grain growth controlled exclu-
sively by the triple junctions. For their simulations, they
considered straight grain boundaries and calculated the
velocity of the triple junctions simply from the product of
the triple junction mobility and the net grain boundary sur-
face tension at the junction. This approach seems to repre-
sent an upper limit for triple junction kinetics as the grain
boundaries are completely flat and do not contribute to the
minimization of the free energy. They also reported that
after some time their simulation structures attained self-
similarity and thus followed linear kinetics. This has been
confirmed by other authors [27,28,34,35] as well. Since even
in the case of purely triple-junction-controlled grain growth
self-similarity and linear kinetics are promptly achieved,
the effect of the triple junctions is apparently reflected only
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Fig. 11. Grain growth kinetics for different starting finite triple junction
mobilities (71, in m?> T~ 's71). An increase of the triple junction mobility
results in a quick convergence to linear kinetics.
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during the transient phase of grain growth. Such transient
has been reported in several grain growth simulations,
including ideal grain growth [35-37], and is apparently
caused by an initial non-equilibrium grain size distribution.
For instance, Fig. 12 (initial Voronoi tessellation) shows
that the grain growth exponent m even for ideal grain
growth can strongly deviate from unity if the initial grain
size distribution is not in equilibrium. Note that for that
simulation the triple junction mobility was considered
infinite.

The effect of the initial distribution on the kinetics of
purely triple-junction-controlled grain growth is shown in
Fig. 13. Two simulations with different initial grain size dis-
tributions are represented. Open triangles correspond to a
distribution as obtained from a Voronoi tessellation,
whereas the data represented by open circles correspond
to a microstructure obtained from ideal grain growth sim-
ulations after self-similarity was attained. The other simu-
lation parameters were identical for both cases. The grain
growth exponent for the former simulation case was
m = 1.7, similar to the exponent reported in Ref. [29] for
simulations with an initial Voronoi network. By contrast,
for the latter case, the exponent was equal to m = 1.45.
These results substantiate that for the same physical condi-
tions the topology of the sample can impact the kinetics.
An important conclusion from this analysis is that, while
triple junctions indeed influence the kinetics of grain
growth, the magnitude of this effect depends on the topol-
ogy as well. In other words, the effect of the triple junctions
cannot be extracted from only the kinetics as they are influ-
enced by both physical (triple junction drag) and topolog-
ical (space filling) constraints. In a more general sense, this
analysis proves that identifying the particular effect of some
physical constraint from only the kinetics is not adequate
as the initial topological state of the sample might have a
larger influence. Furthermore, it is noted that contrary to
expectations parabolic kinetics (S ~ #?) were not achieved
in the simulations for triple-junction-controlled grain
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Fig. 12. Ideal grain growth simulation with a starting Voronoi mosaic as
input. Since the grain size distribution is not in equilibrium, the kinetics
does not obey linearity. Once the distribution is equilibrated, the kinetics
evolves linearly [33].
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Fig. 13. Triple-junction-controlled grain growth. The different kinetics
result from the difference in the starting grain size distribution. For the
open triangles a Voronoi mosaic with a very narrow grain size distribution
was used whereas for the open circles the equilibrium distribution as
obtained from ideal grain growth simulations was utilized.

growth. This result suggests that microstructural develop-
ment under these conditions is still affected by a micro-
structural dimension (whether this is the grain size or
another parameter is still an open question) like in grain-
boundary-controlled grain growth where the driving force
scales with the reciprocal average grain size. This will be
an issue of future research.

5. Conclusions

Equations for the prediction of the growth rate of 2-D
grains undergoing grain growth affected by a finite triple
junction mobility were derived. They were shown to accu-
rately predict the growth rates for a large range of triple
junction mobilities and showed good agreement with net-
work-model simulations. An analysis of the grain growth
kinetics points out that the effect of the initial topology
prior to grain growth is stronger than previously thought.
This indicates as well that the strength of triple junction
effects on grain growth cannot be derived from grain
growth kinetics only.
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