Phys. Mct. Metall. Vol. 53, No. 4, pp. 142-149, 1982 0031-918X,382 $7.50+.00
Printed in Poland © 1983 Pergamon Press Ltd.

UDC 669.017.3:539.219.3

A Y

CONCENTRATION PHASE TRANSITIONS DURING DIFFUSION
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The problem of describing how an intermediate phase grows by diffusion as a wedge in a
boundary region is solved, and the parameters of boundary and volume diffusion during develop-
ment of a y phase wedge when indium is diffusing along a single (001) tin-germanium twist
boundary with misalignment ¢=3 have been determined.
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Concentration Phase Transitions 143

It is well known that if intermediate phases are present on the constitution diagram of two elements
layers of those intermediate phases can develop and grow in the diffusion pair formed of those ele-
ments. The problem of such concentration phase transitions was originally examined by Wagner [1,
2], but more details are given in [3].
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FiG. 1. Constitution diagram of a system AB with intermediate phase ».

FiG. 2. Wedge of intermediate y phase formed during diffusion along interface x=0 (above) and
shape of cross concentration profile (below).

On the other hand, the boundaries of grains and phases are known to be diffusion paths [4, 5],
in which case the diffusion profiles in pairs with intermediate phases will be “pooled” to form a “wedge”
of intermediate phase in the boundary region.

In this study we examine and solve the diffusion problem which describes this phenomenon and
give the results of experiments in which it is observed for the first time. When atoms of element B
are diffused from a layer with concentration ¢, along a grain boundary a wedge of intermediate y-
phase is formed (Fig. 1 and 2).

As in Fisher’s model [6] the boundary shall be a homogeneous layer with high diffusion permeability;
and there shall be no diffusion flux from surface to volume and no diffusion inside. The shape of the

interface is described by x=¢(y, t). Then the volume diffusion of atoms B in the y region is described by
dcy d%c,
ax T oax?’

1y

¢ is time, ¢ the concentration of B in the volume, D, the coefficient of volume diffusion in the y phase.
Diffusion along the grain boundary in the y phase is described by

8%, 2D, dc,
—+ —| =0 2)
ay2 D,,'é 0x 1x=0 ( )

€y is the concentration on the boundary, D, —the coefficient of grain boundary diffusion in the
7 phase, ¢ the width of the boundary. The boundary conditions for (1) have the form

C1)i=0=0; | (3)
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C1|x=0=csy; (4)
ci)x=¢=¢,; (5)

c, is the solubility limit in the y phase (see Fig. 1).
The boundary conditions for equation (2) are given as

Coyly=0=Co; 6
Cs?|y=yo=cr . 7
- By analogy, in the « region
oc, d%c,
——=D; — s 8
ot ox? ®)

d%c,, 2D, 002;

3¢ Do 6xf,=o=0; ®
€3li=0=0; (10)
Colxmg =Ca (11)
. A |
’ Calrmo =0 (12)
(»y>yo0)
€2lx==0; (13)
Caaly=yo=€2 3 (14)
Coaly=n=0, (15)

where D, is the coefficient of volume diffusion, D,,— of boundary diffusion in the « phase, c;—the
concentration in the a phase, ¢,—the solubility limit in the a phase (see Fig. 1). We are ignoring dif-
fusion fluxes on the a— y interface and also parasitic grain boundaries in the y phase. The solution of
the problem is in the form '

ey =y T erp X where 0<x<2bvD,1; 16

1 sy erfb 2\/1)7[ > ) = yto ( a)
C, : X — .
€= ——— erfc (—), where x>2b\/D,t. (16b)
erfc(bv/D,/D,) VDt
Equation (13b) holds when y <g, (Fig. 2). If >y, then
c,=c,, erfc (—— ,Y_) (17)
2vD,t

as in Fisher’s model. The unknown parameter is found from the condition of material balance at a
point on the boundary a—y(x=&=2b J D)

d 0 0
(Cy—ca)'_é-: —'Dy ('_c) +D¢ (—c> .
dt ox x=2bvDyt ax x=2bVDyt (18)
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" After substituting (16) we get

c—¢, Ca
== — ==y 19
& Jrbe’erfb (/nbo 'e¥p 2erfe(b/ ) (19)
where p=+/D,/D,.
After this we only examine cases of small b. Then, from (19) we get
—_ ‘n -
p=""% V_;'\/D, ID,. (20)
Ca

Essentially, this approximation means a linear fall of concentration with increasing x in the y range

Cs—C, Cy v B:
c=c,= 2b\/17.tx ~eg— \/ut-Dr'x. (21)
The diffusion “withdrawal” from the boundary
—2— D (_‘?f_) = —ﬂ-c 22)
6 "\ da/co Jars ¢
being independent of y, so within the y range the dependence cs(y) defined by
0, 242 p (6c) =0, (23)
dy* 6 0x Ji=0 :
is in the shape of a parabola
c,=co—c°_oc’ 5 Lz ¥o—»%), (24)

where .

L1={M}*, 25)
2VD,

and y, is the maximum depth of the y region, which is found from condition

cs|y=yo = Cr .

With (24) we can now find the shape of the y phase wedge

i
— ¢s—¢, ;—D, [co—e, co—c, Yyo— \/n+D
=2bvVD, t= t—= - - 26
{0 \/ ? Ca \/n D, [ C, ¢ Vo Y 2L2 ] D, (
This is a parabola with “width” x, along the base (see Fig. 2)
Co—C \/ ntD
Xo=— 11T Y 7
. ¢. <D,
and curvature
Jatb, 2D
)= = (28)

3VD, D,-6
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1If D, >(¥o, Xo) We can neglect the curvature of the parabola
8

v xo(t)
C(y)=xo(t)— :
X0
But if condition
2 -
c —
(_.V_o) <04 (30)
Ll Ca
is satisfied as well we can assume that within the y region distribution ¢,(Y) is non-linear
y ) r
c,(Y)=cy+(c0-c,)(l———). 3hH .
Yo
To determine yo(t) we have to join solution (16) for the region with solution (32) for the a region
Y—Yo )
Y)=c,e - s 32a
cs()cxp( Lz) (32a)
X
c=c, erfc( ), (32b)
\2v/D,1
where
D,, .
L,= D L. (33)

sy

That is done with condition

dyo dc dc
(C _ca)'_-“= —"Ds (_‘—‘) +Du ("—) . (34)
T dt "\ oy x=y~ Oy =y

Putting (16) and (32) into that condition we find

dyo Co—C Cy Cy

—c,)—=D, —7—D,—— - *D._.-
(C}, C ) dt 2 yo 12L21 yO L2 £ (35)
In equation (35) the lefthand part is much less than the term in the righthand part. In fact
' dyo Yo |
(C?—C,) "(‘i"t‘ ~(c1" C,) T ’ (36)
and the ratio of those terms
€,—C, 213 C,—C, SS_<<1. 37)

Ca Dyst~ Ce \/th

We therefore neglect the second part and for y, obtain a quadratic equation

2
(19) +2es (&)"2 2o, (36)

L, L, Ca

where gg=_[-——"

D

Y
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From (38) follows o
?=—¢s+\/¢f+2c°c_c?; (39
1 a
%2_—.-1\/1+2C°;C’ o5 . (40)
2

A diagram of relation In ¢,~y is given in Fig. 3.
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FiG. 3. Dependence of concentration ¢s near boundary on depth y.

Fia. 4. Cross concentration profiles of indium diffusion along a {001) Sn-Ge twist boundary
interface (p=3°); 1,2~in region of phase wedge (y < yo); 3,4— where y>yo.

Thus, having found the experimental dependence In ¢,(y) and values of Yo and x,, with known
D, we can now calculate D,, D,, and the value of a~y boundary curvature on the basis of equations
(27), (40), (33) and (28). We must first determine the boundary diffusion coefficient for the « phase. -
. Knowing the slope of line In ¢s,—y it can be calculated from (36) and (37) as usual:

4D \* y 2
=—f-— . 41
_Ds“ ( nt ) (ln c/co) 1)

The solution of problem (1) to (12) is readily generalized to the case of diffusion along an interface,
with volume diffusion in only one of the phases, making the substitution

g—i—-’ d. | 42)

Our approximate solution to the problem is valid when the wedge of second phase is much less in
width than the diffusion wedge

xo<VD,1. 43)
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But the depth must be comparable
yo~L. (44)

We are the first to study the diffusion of indium along a single interface in Sn—Ge bicrystals when
formation of an intermediate y phase has been observed. The experiment was performed as follows.
An indium film was electrolytically deposited on the surface of a bicrystal, perpendicular to the inter-
face. A y phase with variable composition (with homogeneity range from 11 to 25 at.7; In) [7, 8]
was formed by concentration phase transition during annealing.

The process was studied on a single interface with given crystallographic para.mcters produced
in the process we developed in [8]. Diffysion treatments were given for 5x 10 sec at 161°C. After
annealing the specimens were kept at 77 K until measurements were started.

We obtained diffusion profiles like those in the diagrams of Fig. 2 by means of X-ray microanalysis
on the JXA-5. For the photography high-purity indium (99-995 at. 9, In) was used as standard with
accelerating voltage 20 kV. The typical intensity ratio of the L,, In line on standard to specimen back-
ground was 300-350. So the radiation intensity of the indium could be measured up to values cor-
responding to its concentration in the specimen, i.e. 0-8-1-0 at. %,. With the given voltage the analysis
could be localized to a region of 2-7 um [10). The corrections for absorption, electron back scattering
and breaking were calculated at around 0-1 %, a low value, because the properties of diffusant and matrix
were so similar, (for Sn and In the 4Z/Z is 0-02 in value). The possibility of fluorescence due to the
continuous spectrum and characteristic Ge radiation makes it difficult to measure the In concentration .
near the interface. But calculations with the methods of [10] did not allow for small values, their max-

imum contributions being 0-1 and 0-2%. -
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F16. 5. Dependence of cs on depth y and profile of y phase wedge during diffusion of indium
along <001> Sn-Ge twist interface, p=23°. The numbers give the points from which the diffusion
profiles have been taken and are given in Fig. 4.

Fi1G. 6. Theoretical (solid line) and experimental (points) shape of y phase wedge during diffusion
of indium along <001> Sn-Ge twist interphase boundary, ¢=13°.

When concentration c, is determined from the peak of a diffusion profile it is usually necessary to
allow for dilution because the total intensity includes a fraction from regions next to the boundary,

where the concentration is lower. Moreover, in Fisher’s model we are measuring ¢ averaged over a .
region of width L =28 um; c/cx1 if 2\/ Dvc,t>>L In our expenment \/ D, t=28 um. So dilution can be .

neglected.
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Now we give the results obtained in the study of heterodiffusion of In along the Sn—Ge interface
.- with simultaneous formation of a wedge of y phase for one of the boundaries (twist boundary with
¢ common axis (001 in Sn and Ge and angle of rotation 3°). Figure 4 shows the In diffusion profiles
taken perpendicular to the interface. It is easy to see they are asymmetrical because there is no diffusion
withdrawal into the Ge (the diffusion coefficient of In in Ge is 10-33 cm?/sec at this temperature).
The peak intensity is less further from the surface. The first two curves describe a region of y phase
contracting as y grows, which is entirely absent from curves 3 and 4. We can see that the profiles are
consistent with theoretical predictions (see Fig. 2). The same numbers /-4 are used in Fig. 5 to denote
the lines along which the profiles have been taken and the points with corresponding c, values. In Fig. 5
we give a diagram of a specimen with a boundary (8- Sn)—7. That profile was also obtained with
X-ray spectral microanalysis. The profile corresponds to the theoretical prediction (see Fig. 2). The
experimental dependence In ¢—y is given in the bottom half of Fig. 5. The points correspond to max-
ima on the diffusion profiles (see Fig. 4). That dependence also differs very little from the relation

given in the first part of this article (see Fig.3). The horizontal intercept with concentration Co is prob-
- ably related with diffusion along (f- Sn)—y, which the calculation does not allow for.

The straightening out of intercept In c—y below ¢, shows that Fisher’s model can be used to cal-
culate D,,. The value was found as D,,0=7-27x10~'3 cm?/sec. The volume diffusion coefficient
D, we determined experimentally from the diffusion profile taken perpendicular to the Sn surface a
long way from the boundary, and it agrees with published data [11]. Then, knowing x,=4-8 x 10~> m
and yo=7-0x10"° m, with formulae (27), (40), (33) and (28) we calculate D, as 3x107'% cm/sec,
Ds 6=5x10"15 cm/sec, 1/R=0-25 cm~*, and we have used the concentration values' found from
Flg 3t ¢p=0105;.¢,=0-083; ¢,=0-052.

The points on Fig. 6 describe the experimental shape of the f-Sn—v mterface, while the continuous
line is that predicted by formula (29). The agreement theory and experiment is evidently good.
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