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Abstract

The present paper deals with the integration of the famous Laplace equation resulting in the expressions of full
mass and weight of the liquid menisci in the system ‘‘melt–crystal’’ during the crystal growth process by Stepanov
(EFG) technique. The problem for the cases of growing ribbon, cylindrical rod, cylindrical tube, rod of arbitrary cross-

section and tube of arbitrary inner and outer cross-sections is solved. The problem for a hydrostatic approximation of
the menisci of growing crystals is solved and it is shown via an analysis of the full energy functional, that the
hydrodynamic factor is too small to be considered in the automated crystal growth systems. r 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Automated control systems (ACS) of the crystal
growth processes from the melt are developing
now for the needs of crystal production and
scientific research. The weight sensors of crystal
and computers are widely used now in ACS. The
problem of exact expressions of program weight
and mass, which weight sensors produce during
the crystal process, exists now in some papers [1,2].
In the paper [2], an expression for the weight of the
meniscus contacted with crystal and shaper of

arbitrary shape is produced as

Pm ¼ rLghSðtÞ þ sLGGðtÞ cos eþ rLgheffSðtÞ

þ KRV0 þ
Z
S

pðh; V0Þ ds:

Here sLG is the surface tension at the liquidus–gas
interface, rL the density of the melt, g the
acceleration due to gravity, h the meniscus height,
SðtÞ the crystal cross-section area, GðtÞ its peri-
meter, e the growth angle, heff the height of the die
edges above the melt pool, KR is a factor of shaper
resistance to melt flow and pðh; V0Þ the hydro-
dynamic pressure under crystallization front. But
this expression is not written correctly. First of
all, there is no term related to the contact of
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the meniscus with the shaper. Secondly, the
hydrostatic pressure is related to the cross-section
area of the crystal instead of that of the shaper.
Finally, the last two terms corresponding to the
hydrodynamic factor should be small enough to
make sensitive influence to the weight sensor. The
present paper deals with the proof of the first two
statements for the various cross-sections of the
shaper and crystal in the Stepanov (EFG) techni-
que. An estimation of the influence of hydrody-
namics in the Stepanov (EFG) technique is made
via the analysis of the partial energies in the free
energy functional.
The expressions for program weight and mass of

menisci are determined via the integration of the
famous Laplace equation. In its turn, Laplace
equation is a result of the minimization of the
functional of the full energy of the liquid meniscus.
According to Ref. [3], an expression of the full
energy functional is expressed as

I ¼ s
Z

S

ds þ rLg
Z

V

y dV-min: ð1Þ

Here s is the surface tension at the liquidus–gas
interface, rL the density of the melt, S the surface
of the liquid meniscus, V the volume of meniscus
melt, and y the vertical coordinate of the point of
the meniscus surface (Fig. 1). The first part of
Eq. (1) is the surface free energy of the meniscus
and the second part of this functional is the
potential energy of the meniscus in the gravitation
field. Eq. (1) describes the meniscus melt in a
hydrostatic approximation. Minimization of this
functional under the condition of the constant
volume of the meniscus results in the well-known
Laplace equation [3]

s 7
1

R1
7

1

R2

� �
¼ rLgðy þ HdÞ: ð2Þ

Here, R1 and R2 are the main curvature radii at
the point of the meniscus surface, and Hd is the
constant defining external pressure in the menis-
cus. External pressure may be produced by the
different levels of the meniscus basis and melt
surface in the crucible. The constant Hd is
usually negative in the real crystal growth pro-
cesses by the Stepanov (EFG) technique when the
melt level is lower than the meniscus basis, as

shown in Fig. 1; although, in general, it may be
zero, as in the Czochralski technique, or positive.
The signs before curvatures in Eq. (2) depend
upon the directions of normal radii of curvature
[3].
Complicated menisci are not considered in the

Stepanov (EFG) technique. Thus, the vertical
coordinate y describes a profile curve of the
meniscus. Eq. (2) may be rewritten as

rLg yðxÞ ¼ s 7
1

R1ðxÞ
7

1

R2ðxÞ

� �
� rLgHd: ð3Þ

Various techniques of integrating the meniscus
profile curve yðxÞ result in the square of the figure
under this meniscus curve or volume of the three-
dimensional meniscus figure, which may be de-
scribed via this profile curve. The volume of the
meniscus figure, multiplied by the density of the
melt, defines the mass of the meniscus. The mass of
the meniscus, multiplied by the earth acceleration
g; defines the weight of the meniscus. In our case,
when the meniscus profile curve yðxÞ exists
obviously in Laplace equation, Eq. (3), it is a the
best condition for integrating.

Fig. 1. Scheme of growing a crystal ribbon by the Stepanov

(EFG) technique.
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Five cases of different menisci are considered in
this paper:

* The meniscus contacted with the growing
crystal ribbon. The part of the meniscus in
contact with the wide side of ribbon is
considered. The thickness of the ribbon is
supposed to be much smaller than its wide
side.

* The meniscus contacted with the growing
crystal cylindrical rod.

* The meniscus contacted with the growing
crystal tube.

* The meniscus contacted with the growing
crystal rod of arbitrary cross-section.

* The meniscus contacted with the growing
crystal tube of arbitrary outer and inner cross-
sections.

2. Case of growing crystal ribbon

In the process of growing ribbon by the
Stepanov (EFG) technique, only the meniscus
contacted with the wide side of the ribbon is
considered. In this case, one main curvature
1=R1ðxÞ is equal to zero (Fig. 1). Therefore,
Eq. (3) results in

rLg yðxÞ ¼ �s
1

R2ðxÞ
� rLgHd: ð4Þ

Here ‘‘�’’ sign is used because curvature normal
(Fig. 2) is directed into the melt of the meniscus
[3,4].
Weight Pm; y of the part of the meniscus located

under the surface defined by the profile curve yðxÞ
should be written according to Eq. (4) as

Pm; y ¼ gMm; y ¼ rLgc
Z d=2

b=2
yðxÞ dx

¼ �sc

Z d=2

b=2

dx

R2ðxÞ
� rLgHdc

Z d=2

b=2
dx: ð5Þ

Here, Mm; y is the mass of the part of the meniscus
located under the surface defined by the profile
curve yðxÞ (Fig. 1), b the thickness of the crystal
ribbon, c the width of the ribbon, and d the
thickness of the shaper. According to Eq. (5), the

mass Mm; y may be written as

Mm; y ¼ �
sc

g

Z d=2

b=2

dx

R2ðxÞ
� rLHdc

Z d=2

b=2
dx: ð6Þ

The mass Mm; b of the part of the meniscus located
under the planar interface boundary (Fig. 1) is
written as

Mm; b ¼ rLhc
b

2
� rLHdc

b

2
: ð7Þ

Here h is the height of the meniscus with planar
interface boundary. Full mass Mm of the meniscus
should be written as

Mm ¼ 2ðMm; b þ Mm; yÞ: ð8Þ

The most interesting thing in Eq. (6) is the first
part, namely, the integral of curvature. As shown
and described in Fig. 2, Eq. (6) may be written as

Mm; y ¼ �
sc

g
sin a y

g

��� � rLHdc
d

2
�

b

2

� �
: ð9Þ

Here g and y are the angles between the tangent
and horizontal line at the points of the contact of
the meniscus and the crystal or shaper, respec-
tively, as shown in Fig. 1. The angle e is the growth
angle. An isotropic approximation of crystal
growth is considered and the growth angle is
a constant value depending on the physical

Fig. 2. Scheme of the integration of the second main curvature.
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properties of the material. Therefore, eþ g ¼ p=2:
Simplification of the Eq. (9) results in

Mm; y ¼
sc

g
cos e� sin yð Þ � rLHdc

d

2
�

b

2

� �
: ð10Þ

Using expressions (7), (8), and (10), the full
meniscus mass can be written as

Mm ¼ rLhbc þ
2sc

g
cos e� sin yð Þ � rLHdcd : ð11Þ

Taking into account the definition of capillary
constant a [3] as a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=rLg

p
; Eq. (11) may be

rewritten as

Mm ¼ rLhbc þ rLca
2 cos e� sin yð Þ � rLHdcd:

ð12Þ

Eq. (12) represents the expression for the full mass
of the meniscus of the wide sides of the growing
crystal ribbon.

3. Case of growing crystal cylindrical rod

In the case of the growing crystal cylindrical
rod, both main curvatures are involved in Laplace
equation, Eq. (3) (Figs. 3 and 4). The radii of the
main curvatures have different signs, because they
have different directions relative to the meniscus
surface (Figs. 2 and 4). Thus, Laplace equation
should be written as

rLg yðxÞ ¼ s
1

R1ðxÞ
�

1

R2ðxÞ

� �
� rLgHd: ð13Þ

Using the cylindrical coordinate system weight
Pm; y of the part of the meniscus located under the
surface defined by the profile curve, yðxÞ should be
written according to Eq. (13) as

Pm; y ¼ gMm; y

¼ 2prLg
Z rd

r

x yðxÞ dx

¼ 2ps
Z rd

r

x dx

R1ðxÞ
� 2ps

Z rd

r

x dx

R2ðxÞ

� 2prLgHd

Z rd

r

x dx: ð14Þ

Here, Mm; y is the mass of the part of the meniscus
located under the surface defined by the profile
curve yðxÞ (Fig. 3), r the radius of the crystal rod,

and rd the radius of the shaper. According to
Eq. (14) and expressions in Fig. 4, the partial mass
Mm; y may be written as

Mm; y ¼ �
2ps
g

Z rd

r

sin aðxÞ dx

�
2psc

g

Z rd

r

x dx

R2ðxÞ
� 2prLHd

Z rd

r

x dx:

ð15Þ

Fig. 3. Scheme of growing the cylindrical crystal rod by the

Stepanov (EFG) technique.

Fig. 4. Scheme of the calculation of the first main curvature.
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The mass Mm; r of the part of the meniscus located
under the planar interface boundary (Fig. 1) is
written as

Mm; r ¼ prLhr2 � prLHdr
2: ð16Þ

Here h is the height of the meniscus with a planar
interface boundary. The expression Mm for the full
mass of the meniscus should be written as

Mm ¼ Mm; r þ Mm; y: ð17Þ

Now it is better to designate the first integral in
Eq. (15) as J1 and the second integral in the same
expression as J2: After this substitution, Eq. (15)
may be written as

Mm; y ¼ �
2ps
g

ðJ1 þ J2Þ � 2prLHd

Z rd

r

x dx: ð18Þ

Here, J1 ¼
R rd

r sin aðxÞ dx and J2 ¼
R rd

r x dx=R2ðxÞ:
Integral J2 should be calculated in parts. Using the
well-known expression for integrating by partsR

u dv ¼ uv�
R
v du [5] and designating u ¼

x; dv ¼ dx=R2ðxÞ the expression for v can be
written as v ¼

R rd
r dx=R2ðxÞ: The last integral is

already known from Fig. 2 and Eq. (9). Thus,
integral J2 is written as

J2 ¼ x sin aðxÞ rd
r

�� � J1: ð19Þ

Eq. (19) results in the sum J1 þ J2 ¼ x sin aðxÞjrdr
and Eq. (18) should be simplified as

Mm; y ¼ �
2ps
g

x sin aðxÞjrdr � 2prLHd
x2

2
jrdr : ð20Þ

After further simplification, Eq. (20) becomes

Mm; y ¼
2ps
g

r cos e� rd sin yð Þ � prLHdðr2d � r2Þ:

ð21Þ

According to Eqs. (16), (17) and (21), the expres-
sion for the full mass of the meniscus may be
written as

Mm ¼ prLhr2 þ
2ps
g

r cos e� rd sin yð Þ

� prLHdr
2
d: ð22Þ

Taking into account the definition of the capillary
constant, the expression for the full mass of the

meniscus may be rewritten as

Mm ¼prLhr2 þ prLa2 r cos e� rd sin yð Þ

� prLHdr
2
d: ð23Þ

4. Case of growing crystal tube

In the case of the growing crystal tube, the
meniscus consists of three parts (Fig. 5): part Mm; r

of meniscus located under the interface boundary,
part Mm; y; 1 of the meniscus located under the
surface defined by the outer meniscus curve y1ðxÞ
and part Mm; y; 2 of the meniscus located under the
surface defined by the inner meniscus curve y2ðxÞ:
Thus, the expression for the full mass Mm of the
meniscus is written as

Mm ¼ Mm; r þ Mm; y; 1 þ Mm; y; 2: ð24Þ

A planar interface boundary is considered in this
paper. Generally, menisci heights h1 and h2 at the

Fig. 5. Scheme of growing the crystal tube by the Stepanov

(EFG) technique.
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outer and inner sides of the tube are different
(Fig. 5) because radii R1 of the main curvatures at
different sides of the tube have different directions
relative to the volume of the meniscus: at the outer
surface of the meniscus, radius R1 is directed
outside of the meniscus volume and at the inner
surface, it is directed inside of the meniscus
volume. But growth angle e must be the same on
both sides of the growing tube under the con-
sideration of isotropic crystal growth [6]. The
partial mass functional Mm; r should be written as

Mm; r ¼ prL
h1 þ h2

2
ðr21 � r22Þ � prLHdðr21 � r22Þ:

ð25Þ

Here, r1 and r2 are the outer and inner radii of the
tube, respectively. The outer meniscus defined by
the curve y1ðxÞ should be described as for the case
of the growing cylindrical rod and the expression
for partial mass Mm; y; 1 is written as

Mm; y; 1 ¼
2ps
g

r1 cos e� rd; 1 sin y1
� 	

� prLHdðr2d; 1 � r21Þ: ð26Þ

Here, rd; 1 is the outer radius of the shaper, and y1
the angle of the contact of the outer part of the
meniscus with the shaper (Fig. 5).
As mentioned above, the radius R1 of the first

main curvature of the part of the meniscus defined
by the profile curve y2ðxÞ has another sign in
comparison with the case of the growing cylind-
rical rod. Therefore, the inner meniscus is de-
scribed by the Laplace equation as

rLg yðxÞ ¼ s �
1

R1ðxÞ
�

1

R2ðxÞ

� �
� rLgHd: ð27Þ

The expression for the partial mass Mm; y; 2

according to Eq. (27) may be written as

Mm; y; 2 ¼ �
2ps
g

Z r2

rd; 2

x dx

R1ðxÞ

�
2ps
g

Z rd; 2

r2

x dx

R2ðxÞ
� 2prLHd

Z r2

rd; 2

x dx:

ð28Þ

The lower and upper limits in Eq. (28) in the
second integral changed their places because of the
other direction of integration of the second main

curvature for the inner contour in comparison
with the outer contour (in a double-contour
system of the cross-section of the tube). The
integrals in Eq. (28) are calculated as in the case
of the cylindrical rod and thus the expression for
the partial mass Mm; y; 2 may be written as

Mm; y; 2 ¼ �
2ps
g

x sin aðxÞjrd; 2r2
þ 2prLHd

x2

2
jrd; 2r2

:

ð29Þ

After simplification, Eq. (29) should be written as

Mm; y; 2 ¼
2ps
g

r2 cos e� rd; 2 sin y2
� 	

þ 2prLHdðr2d; 2 � r22Þ: ð30Þ

Here, rd; 2 is the inner radius of the shaper, and y2
the angle of the contact of the inner part of the
meniscus with the shaper (Fig. 5). Following
Eqs. (25), (26) and (30), the expression for the full
mass Mm can be written as

Mm ¼prL
h1 þ h2

2
r21 � r22
� 	

þ
2ps
g

ðr1 þ r2Þ cos eð

�rd; 1 sin y1 � rd; 2 sin y2
	

� prLHdðr2d; 1 � r2d; 2Þ: ð31Þ

Taking into account the definition of capillary
constant a; the expression for the full mass Mm

may be written as

Mm ¼prL
h1 þ h2

2
r21 � r22
� 	

þ prLa2 ðr1 þ r2Þ cos eð

�rd; 1 sin y1 � rd; 2 sin y2
	

� prLHdðr2d; 1 � r2d; 2Þ: ð32Þ

5. Case of growing crystal rod of arbitrary

cross-section

A simplified scheme of the growing crystal rod
of arbitrary cross-section is shown in Fig. 6. In this
case the meniscus consists of two parts: the part of
the meniscus located under the planar interface
boundary and the part of the meniscus located
under the complicated surface yðx; jÞ contacted
with the crystal rod and the shaper. Here, j is the
azimuthal angle in a cylindrical coordinate system.
The expression for the full mass Mm is the sum of
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two corresponding partial masses Mm; c and Mm; y

(Fig. 6) written as

Mm ¼ Mm; c þ Mm; y: ð33Þ

The first partial mass functional Mm; c defining the
part of the meniscus under the interface boundary
may be written as

Mm; c ¼ rLhSc � rLHdSc: ð34Þ

Here, Sc is the square of the crystal cross-section.
Relating to the part of meniscus located under the
surface yðx; jÞ its radii Ri of the main curvatures
and the local height y of this part of the meniscus
do not depend obviously on the azimuthal angle j;
because they only depend on the shapes of contors
rcðjÞ and rdðjÞ of the crystal and the shaper,
respectively. It is possible in this case, because
hydrostatic menisci are considered, which are in
good agreement with the conditions of the real
processes of crystal growth from the melt by the
Stepanov (EFG) and Czochralski technique [4].
Following this statement, a shape of the cross-
section of the crystal is similar to the form of the
shaper. It is useful to introduce a relative
coefficient k ¼ rcðfÞ=rdðfÞ; k > 0: Thus, the local

height yðxÞ and radii RiðxÞ depend obviously only
on the radial coordinate x (Fig. 6) and it is possible
to integrate Laplace Eq. (13) written for the case of
growing crystal rod. Weight Pm; y of the part of the
meniscus located under the surface defined by the
function yðxÞ of the local meniscus height should
be written according to Eq. (13) as

Pm; y ¼ gMm; y ¼ rLg
Z 2p

0

Z rdðfÞ

rcðfÞ
x yðxÞ dx df:

ð35Þ

Partial mass Mm; y should be written according to
Eq. (13) and Eq. (35) as

Mm; y ¼
s
g

Z 2p

0

Z rdðfÞ

krdðfÞ

x

R1ðxÞ
dx df

�
s
g

Z 2p

0

Z rdðfÞ

krdðfÞ

x

R2ðxÞ

� rLHd

Z 2p

0

Z rdðfÞ

krdðfÞ
x dx df: ð36Þ

Eq. (36) may be written as

Mm; y ¼ �
s
g
ðJ1 þ J2Þ � rLHdJ3: ð37Þ

Here, integral J1 is equal to

J1 ¼ �
Z 2p

0

Z rdðfÞ

krdðfÞ

x

R1ðxÞ
dx df

¼
Z 2p

0

Z rdðfÞ

krdðfÞ
sin aðxÞ dx df: ð38Þ

Integral J3 is equal to

J3 ¼
Z 2p

0

Z rdðfÞ

krdðfÞ
x dx df

¼ ð1� k2Þ
Z 2p

0

r2dðfÞ
2

df

¼ ð1� k2ÞSd ¼ Sd � Sc: ð39Þ

Here, Sd ¼
R 2p
0 r2dðjÞ=2 dj and Sc ¼ k2Sd are the

definitions of the areas of the cross-sections of
the shaper and crystal, respectively. According to
the process of integration described in the case of

Fig. 6. Scheme of growing the crystal rod of arbitrary cross-

section.

S.N. Rossolenko / Journal of Crystal Growth 231 (2001) 306–315312



the ribbon integral, J2 may be written as

J2 ¼
Z 2p

0

x sin aðxÞ rdðfÞ
krdðfÞ

��� df� J1: ð40Þ

According to Eq. (37)–Eq. (40) the partial mass
functional Mm; y should be written as

Mm; y ¼
s
g

Gc cos e� Gd sin yð Þ � rLHdðSd � ScÞ:

ð41Þ

Here, Gd ¼
R 2p
0 rdðfÞ df and Gc ¼ kGd are the

definitions of the lengths of the contours of
the shaper and crystal, respectively. Angle e is
the growth angle and y is the contact angle
between meniscus and shaper (Fig. 6). According
to Eqs. (33), (34) and (41) the expression for the
full mass Mm should be written as

Mm ¼ rLhSc þ
s
g

Gc cos e� Gd sin yð Þ � rLHdSd:

ð42Þ

Taking into account the definition of the
capillary constant, the expression for the full mass
may be written as

Mm ¼ rLhScþ
1

2
rLa2 Gc cos eð �Gd sin yÞ � rLHdSd:

ð43Þ

6. Case of growing crystal tube of arbitrary outer

and inner cross-sections

An example of the cross-section of the crystal
tube of arbitrary outer and inner contours is
schematically shown in Fig. 7. The shape of the
cross-section of the shaper is described in the
cylindrical coordinate system with functions
rd; 1ðfÞ and rd; 2ðfÞ of outer and inner contours
of the shaper cross-section, respectively. The shape
of the cross-section of the growing crystal is
similar to the shape of the shaper cross-section
and described by the functions rc; 1ðfÞ and rc; 2ðfÞ;
respectively. The cross-sections of the shaper and
crystal have their own lengths G and squares S:
The shaper has the length Gd; 1 of its outer
contour, the length Gd; 2 of its inner contour and
the square Sd of the cross-section (Fig. 7). The
crystal has the length Gc; 1 of its outer contour, the

length Gc; 2 of its inner contour and the square Sd

of the cross-section. (Fig. 7). The outer and inner
meniscus profiles may have different meniscus
heights h1 and h2 at their contours, respectively,
under the consideration of the planar interface
boundary.
The expression for the full mass Mm in the case

described should be written as

Mm ¼rL
h1 þ h2

2
Sc þ

s
g
ðGc; 1 þ Gc; 2Þcos e
�

�Gd; 1 sin y1 � Gd; 2 sin y2
	
� rLHdSd: ð44Þ

Taking into account the definition of the
capillary constant, this expression may be written
as

Mm ¼rL
h1 þ h2

2
Sc þ

1

2
rLa2 ðGc; 1 þ Gc; 2Þcos e

�
� Gd; 1 sin y1 � Gd; 2 sin y2

	
� rLHdSd: ð45Þ

7. Numerical analysis and conclusions

Taking into account the external pressure factor
Hd ¼ 0 and contact angle y ¼ 0 between the
meniscus and free surface of the melt in the
crucible the well-known expression [7] of the full
mass of the meniscus for the cylindrical rod

Fig. 7. Scheme of the cross-sections of the shaper and crystal in

the case of the crystal tube with arbitrary outer and inner

contours grown by the Stepanov (EFG) technique.
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grown by the Czochralski technique can be
produced as

Mm ¼ prLhr2 þ
2ps
g

r cos e:

The authors of papers [1,2] mechanically add two
terms related to the hydrodynamic factor to the
expression of full mass. But it is not clear what
equation of non-Laplace type was considered for
the meniscus surface. To obtain additional terms
in the expression of the full mass it is necessary to
consider another, more general, full energy func-
tional instead of that used in this paper, Eq. (1).
Then, a new full energy functional must be
minimized and a new equation for the meniscus
profile curve distinguishing from the Laplace
equation must be produced. After these two steps,
a new equation for the profile curve must be
integrated and correct additional terms can be
produced. But this is not necessary as the
hydrodynamic factor is too small. An analysis of
the influence of the hydrodynamic factor is made
in the book [4] and it was shown that it is possible
to make hydrostatic approximations in the con-
sideration of the meniscus profile curves and to use
the Laplace equation up to crystal growth rates of
0:1� 1 m=s: These large values of rates are
impossible in the Stepanov (EFG) technique.
Using Eq. (1) it is possible now to make

comparison of the surface free energy of the
meniscus, its potential energy and hydrodynamic
factor (e.g. kinematic energy) for the meniscus of
concrete dimensions. The growth of a cylindrical
crystal with radius rc ¼ 5 mm; height h ¼ 0:1 mm
of the meniscus, crystal growth rate u ¼ 1 mm=min
and distance Hd ¼ �20 mm between the working
edge of the shaper and the surface of the melt in
the crucible is considered.
First, integral part I1 of the full energy

functional (1) (surface free energy) is approxi-
mately equal: I1 ¼ 2prchs ¼ prchrLga

2: Here, the
shape of the surface of the meniscus is represented
by the cylindrical surface when rcErd: Second, the
integral part I2 of the functional (1) (potential
energy) is equal: I2 ¼ pr2chrLg h=2þ Hd

� 	
: It is

possible to evaluate kinetic energy I3 of the
meniscus considering the movement of the whole
meniscus with the crystallization rate u: In this

consideration, kinetic energy is equal: I3 ¼
mu2=2 ¼ pr2chrLu

2=2: For the case of the growing
crystal described above, the values of the surface,
potential and kinetic energies are equal:
I1 ¼ 10�6 J, I2 ¼ �6:28� 10�6 J, I3 ¼ 5� 10�15 J.
As shown, the kinetic energy is too small in
comparison with the other two energies. It is
interesting to find the formula for the relations
between these energies. The relation

I2
I1

����
���� ¼ rLgrc h=2þ Hd

�� ��
2s

E 6:28;

is equal to the characteristic undimensioned
Bond number B0 ¼ rLgL

2=s [4]. Here L is the
characteristic linear dimension of the system
‘‘melt–meniscus–crystal’’. The relation I3=I1 ¼
rLu

2rc=4sE 5�10�951 defines the undimen-
sioned Weber number We ¼ rLu

2L=s [4]. The
relation

I3
I2

����
���� ¼ u2

2g h=2þ Hd

�� ��E 7�10�951;

defines the undimensioned Froude number F ¼
u2=gL [3].
The authors of papers [1,2] also do not take into

account the contact of the meniscus with the edges
of the shaper in their expressions of full meniscus
mass. They also use the area of the crystal cross-
section instead of the cross-section of the shaper in
places of the mass expressions where the external
pressure factor Hd appears.
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