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a b s t r a c t

This work is a study of the effect of co-doping (ZrO2)0.9(Sc2O3)0.1 solid solution with yttria and/or ceria on
the phase composition, local structure and transport properties of the crystals. The solid solution crystals
were grown using directional melt crystallization in cold crucible. We show that ceria co-doping of the
crystals does not stabilize the high-temperature cubic phase in the entire crystal bulk, unlike yttria co-
doping. Ceria co-doping of the (ZrO2)0.9(Sc2O3)0.1 crystals increases their conductivity, whereas the
addition of 1mol.% yttria tangibly reduces the conductivity. Equimolar co-doping of the (ZrO2)0.9(-
Sc2O3)0.1 crystals with ceria and yttria changes the conductivity but slightly. Optical spectroscopy of the
local structure of the crystals identified different types of optical centers. We found that the fraction of
the trivalent cations having a vacancy in the first coordination sphere in the ceria co-doped crystals is
smaller compared with that in the yttria co-doped crystals.
© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The ionic conductivity of scandia stabilized zirconia-based ma-
terials (ScSZ) is higher compared with that of the ZrO2eY2O3 sys-
tem solid solutions [1e3]; this makes the working temperature of
the electrochemical devices lower. Zirconia-based materials with
high ionic conductivity can be applied in one of the most promising
electrochemical systems, which converts chemical energy of hy-
drocarbon fuel oxidation to electrical and heat energy e solid oxide
fuel cells, SOFC [4e7]. Compositions containing (10e12) mol.%
Sc2O3 have the maximum conductivity in the ZrO2eSc2O3 system.
However, the high-conductivity cubic phase transforms to the
rhombohedral one in this composition range, this transition
causing a significant reduction in the conductivity [1,8]. Further-
more, these materials exhibit a degradation of the electrophysical
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properties after long-term operation. Co-doping of ScSZ with a
range of metal oxides such as Y2O3 or СеО2 stabilizes the high-
temperature cubic phase at room temperature thus reducing con-
ductivity degradation [2,9e12].

The high oxygen ionic conductivity of the zirconia-based solid
electrolytes is caused by the presence of oxygen vacancies in their
anion sublattice. These vacancies form due to the heterovalent
substitution of the Zr4þ ions by the R3þ ones. Ionic conductivity
depends on the type and concentration of the stabilizing oxide, the
phase composition and the local crystalline structure of the ZrO2
base solid solutions. The interaction of the vacancies with stabi-
lizing oxide cations may cause the formation of different types of
complexes [13e16]. The formation of these complexes increases the
activation energy and hence reduces the conductivity [17,18]. The
type of the forming complexes can be characterized by the location
of the oxygen vacancies relative to the zirconium and doping im-
purity cations, i.e., the local structure of the crystalline lattice. One
method for studying the local structure of the crystals is selective
laser spectroscopy. This method is widely used for studying the
defect structure of zirconia-based solid solutions [19,20].
r B.V. This is an open access article under the CC BY-NC-ND license (http://
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Table 1
Compositions, densities and brief notations of crystals.

Composition Notation Density, g/cm3

(ZrO2)0.9(Sc2O3)0.1 10ScSZ 5.753± 0.002
(ZrO2)0.895(Sc2O3)0.1(CeO2)0.005 10Sc0.5CeSZ 5.748± 0.001
(ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 10Sc1CeSZ 5.757± 0.002
(ZrO2)0.895(Sc2O3)0.1(Y2O3)0.005 10Sc0.5YSZ 5.731± 0.002
(ZrO2)0.89(Sc2O3)0.1(Y2O3)0.01 10Sc1YSZ 5.744± 0.001
(ZrO2)0.89(Sc2O3)0.10(CeO2)0.005(Y2O3)0.005 10Sc0.5Ce0.5YSZ 5.735± 0.001
(ZrO2)0.885(Sc2O3)0.10(CeO2)0.005(Y2O3)0.01 10Sc0.5Ce1YSZ 5.747± 0.002

Fig. 1. Appearance of (a) 10ScSZ, (b) 10Sc1YSZ and (c) 10Sc0.5Ce1YSZ crystals.
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The aim of this work is to study the effect of 10ScSZ solid so-
lution co-doping with yttria and/or ceria on the phase composition,
local structure and transport properties of the crystals grown by
directional melt crystallization.

2. Experimental

2.1. Preparation of single-crystalline samples

(ZrO2)0.9-х-y(Sc2O3)01(Y2O3)х(СeO2)y (x¼ 0; 0.005; 0.01), y ¼ (0;
0.005; 0.01) solid solution crystals were grown by directional melt
crystallization in cold crucible [21]. Some compositions were
additionally doped with 0.1mol.% Eu2O3 the ions of which were
used as a spectroscopic probe for a spectral study.

2.2. Experimental techniques

The chemical composition of the as-grown crystals was exam-
ined using a JEOL 5910 LV scanning electron microscope with an
INCA Energy dispersion tool. Molten zirconia, scandia and ceria
were used as references for crystal composition measurements.

The phase composition of the crystals was analyzed using X-ray
diffraction on a Bruker D8 instrument in СuKa radiation and using
Raman spectroscopy. The excitation source was a 532 nm laser,
Raman device was described in details previously [22e24]. The
Raman spectra were recorded at multiple points along the crystal
for phase composition homogeneity assessment.

The density of the crystals was measured by hydrostatic
weighing on a Sartorius hydrostatic weighing device. The micro-
structure was examined using optical microscopy under a Discov-
ery V12 stereo microscope.

The luminescent spectra were recorded using a Horiba FHR
1000 spectrometer at 300 and 77 K. A Hamamatsu R928 photo-
multiplier was used as the photodetector. Luminescence was
excited at the 5D1 level of Eu3þ by second harmonics of YVO4:Nd
(lex¼ 532 nm) and LiYF4:Nd (lex¼ 527 nm) lasers.

The conductivity of the crystals was studied in the 400e900 �C
range on heating with a Solartron SI 1260 frequency characteristic
analyzer in the 1 Hz to 5MHz frequency range at a 24mV current
signal amplitude. We used 7� 7 mm2 0.5mm thick plates for the
measurements. The current contacts were formed by applying
platinum paste (burning onto the opposite sides of the crystals at
950 �C for 1 h in air). The impedance spectra were processed using
the ZView software (ver. 2.8). The specific conductivity of the
crystals was calculated from the data retrieved from the impedance
spectra taking into account the dimensions of the specimens.

3. Results and discussion

3.1. Single-crystalline samples

We synthesized ZrO2 þ 10 mol.% Sc2O3 solid solution crystals
stabilized with CeO2 and/or Y2O3. Table 1 summarizes the com-
positions, densities and notations of the crystals to be used
hereinafter.

The appearance of the as-grown crystals differed depending on
their compositions. The 10ScSZ crystals were semi-transparent;
this is an indirect indication of the presence of the second phase
in the crystals. Addition of 0.5 and 1mol% CeO2 produces an
orange-red hue of the crystals the intensity of which grows with
increasing ceria concentration, yet the crystals remaining semi-
transparent. Addition of 0.5mol.% Y2O3 produces transparent re-
gions, and further increase in the Y2O3 concentration to 1mol%
makes the crystals homogeneous and completely transparent. CeO2
and Y2O3 co-doping of the crystals (10Sc0.5Ce0.5YSZ) produced
inhomogeneous crystals the bottom parts of which were opaque,
and the top parts were transparent. The 10Sc0.5Ce1YSZ crystals
were completely transparent and homogeneous. Fig. 1 shows the
appearance of crystals for some compositions.
3.2. X-ray diffraction analysis

The chemical composition and the distribution of the solid so-
lution components along the crystals were analyzed using energy
dispersion X-ray diffraction.

Ceria doping of 10ScSZ with 0.5mol.% (10Sc0.5CeSZ) produced a
homogeneous CeO2 distribution, while for 1mol.% CeO2
(10Sc1CeSZ) an enrichment of the top part of the crystal with
cerium was observed. The optically homogeneous 10Sc1YSZ crys-
tals (Fig. 1b) had a homogeneous longitudinal component distri-
bution, their composition corresponding to the raw charge
composition. The transparent regions of the optically inhomoge-
neous 10Sc0.5Ce0.5YSZ crystals exhibited a slight increase in the
ceria and yttria concentrations. The 10Sc0.5Ce0.5YSZ crystals had
no sharp boundary between the transparent and the opaque re-
gions. At a higher Y2O3 concentration (1mol.%, 10Sc0.5Ce1YSZ) the
visually homogeneous crystals had a homogeneous longitudinal
component distribution.

Table 2 shows X-ray diffraction data on the phase composition
of the (ZrO2)0.9-х-y(Sc2O3)0.1(Y2O3)х(СeO2)y crystals.

As can be seen from Table 2, the 10ScSZ crystal was a mixture of
two phases, i.e., the cubic and the rhombohedral zirconia modifi-
cations. Addition of 0.5 and 1mol% ceria to 10ScSZ does not in-
crease the quantity of the cubic phase in the crystals. However, the
lattice parameter of the cubic phase increases with ceria concen-
tration. Yttria doping of the 10ScSZ crystals has a greater effect on
the phase composition of the crystals compared with cerium
doping. Addition of 0.5mol.% Y2O3 to 10ScSZ increase the quantity
of the cubic phase, while at 1mol% Y2O3 the high-temperature
cubic phase stabilizes in the entire crystal bulk. The lattice
parameter of the cubic phase also increases with yttria concentra-
tion. For co-doping of 10ScSZ with ceria and yttria to 0.5mol.%, the



Table 2
Phase composition and lattice parameters of (ZrO2)0.9-х-y(Sc2O3)0.1(Y2O3)х(СeO2)y
crystals.

Sample Phase Weight Fraction, % Lattice parameters

a, nm c, nm

10ScSZ c 65 0.5091(1) 0.9010(2)
r 35 0.3562(2)

10Sc0.5CeSZ c 65 0.5092(1) 0.9008(2)
r 35 0.3561(2)

10Sc1CeSZ с 70 0.5093(1) 0.9007(2)
r 30 0.3560(2)

10Sc0.5YSZ c 80 0.5092(1) 0.9007(2)
r 20 0.3560 (2)

10Sc1YSZ c 100 0.5093(1)
10Sc0.5Y0.5CeSZ c 80 0.5092(1) 0.9008(2)

r 20 0.3560(2)
10Sc1Y0.5CeSZ c 100 0.5093(1)

Fig. 2. Raman spectra of (ZrO2)0.9-х-y(Sc2O3)0.1(Y2O3)х(СeO2)y crystals (**top of the
crystal,*bottom of the crystal).
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quantity of the cubic phase in the 10Sc0.5Ce0.5YSZ crystal was
comparable to that in the 10Sc0.5YSZ crystal. Thus, we did not
observe high-temperature cubic phase stabilization as a result of
cerium doping to 0.5mol.%.

Data for crystals’ phase composition in Table 2 do not agree with
the results of numerous studies of ceramic samples. In particular, it
was reported that ceramic samples of 10Sc1CeSZ have single-phase
cubic structure [10,15,25,26]. The phase composition and proper-
ties of the zirconium based materials strongly depend on thermal
history. For ceramic technologies the materials are typically sin-
tered at up to 1600 �C. We synthesized the crystals by directional
melt crystallization beginning from temperatures above the
melting point (approx. 2800 �C). This difference in the synthesis
conditions may alter the phase formation mechanisms occurring in
the material and eventually lead to different phase compositions of
the synthesized specimens in spite of their similar chemical
composition.

Crystal density depends on type and concentration of stabilizing
oxide as well as on phase composition of the crystal, it growth
when on adds ceria. Density of single-phase cubic crystal
10Sc0.5Ce1YSZ is slightly above the density of 10Sc1YSZ because
we additionally introduced the heavier cerium ion in a crystal
composition. Density of two-phase (c þ r) crystals is mainly gov-
erned by two factors. Introduction of yttria and ceria, which are
heavier than Sc2O3, has to lead to growth of crystal density,
meanwhile increase of rhombohedral phase content leads to
decrease of crystal density, as rhombohedral phase has lower
density than cubic phase. That is why there is no obvious depen-
dence of two-phase crystal density.
3.3. Raman spectroscopy analysis

The Raman spectra of the as-grown crystals are shown in Fig. 2.
The phase composition data retrieved from the Raman spectra
suggest that the Raman spectra of the homogeneous and trans-
parent 10Sc1YSZ and 10Sc0.5Се1YSZ crystals are typical of the t'`
phase [27]. The Raman spectra of the two-phase 10ScSZ,
10Sc0.5CeSZ and 10Sc0.5Се0.5YSZ crystals contain bands typical of
the rhombohedral phase, but these bands are quite broadened. The
Raman spectra of the 10Sc1СеSZ resembles that of the cubic phase
but is strongly broadened in the region of the rhombohedral phase
bands.

Thus, the Raman spectroscopy data are generally in agreement
with the X-ray diffraction data. One should however note that,
according to X-ray diffraction data, the Raman spectra of the single-
phase cubic crystals have a peak near 480 cm�1 which is attributed
to the tetragonal t'` phase [27].
3.4. Impedance spectroscopy analysis and temperature dependence
of conductivity

Typical impedance spectra of two crystals are shown at Fig. 3:
for single-phase cubic crystal 10Sc1YSZ (a) and for 10Sc0.5CeSZ (b),
which consist of cubic and rhombohedral phases. These spectra
consist of arc in high-frequency part of the spectrum, which cor-
responds to bulk conductivity, as well as low-frequency arc, which
present polarization resistance of electrodes. Intermediate arc,
which corresponds to grain boundary conductivity, is absent. Thus,
despite of two-phase structure of 10Sc0.5CeSZ crystal its imped-
ance spectrum has no peculiarities in comparison to impedance
spectrum of single-phase cubic 10Sc1YSZ crystal.

Fig. 4 shows the conductivity as temperature functions of the
(ZrO2)0.9-х-y(Sc2O3)0.1(Y2O3)х(СeO2)y crystals in Arrhenius co-
ordinates. The temperature functions of the conductivity of the
10ScSZ, 10Sc0.5CeSZ and 10Sc0.5Ce0.5YSZ crystals have a clear
break in the low-temperature region indicating the presence of the
rhombohedral to cubic phase transition. The absence of that break
in the temperature function of the electrical conductivity of the
10Sc1CeSZ specimen which also contains the rhombohedral phase
can be attributed to the inhomogeneity of the crystal. This crystal
contains large areas of rhombohedral phase, which are non-
uniformly placed in cubic matrix.

Fig. 5 shows effect of dopant content on the electrical conduc-
tivity of 10ScSZ crystals doped with ceria and yttria and co-doped
with these oxides at 1173 K. Ceria doping of the 10ScSZ crystals
increases their conductivity, with the highest conductivity occur-
ring at 0.5mol.% ceria. Same maximum of conductivity at 0.5mol.%
of ceria was also detected in samples of SсSZexCeO2 (x¼ 0.5, 1.0,
5.0mol.%), which were prepared at 1600 �C from nano-sized
powders [28]. Yttria doping to 1mol.% significantly reduces the
conductivity. Equimolar co-doping of the 10ScSZ crystals changes
their conductivity but slightly, and further increasing the yttria
concentration to 1mol.% leads to a decrease in the conductivity.
Interestingly, the 10Sc1YSZ and 10Sc0.5Ce1YSZ crystals have close
conductivities, i.e., in this case ceria doping to 0.5mol.% has but
minor effect on the conductivity.
3.5. Luminescence spectroscopy analysis

We used optical spectroscopy to study the local structure of the



Fig. 3. Impedance spectra of the 10Sc1YSZ (а) and 10Sc0.5CeSZ (b) crystals at 653 and
719 K respectively.

Fig. 4. Electrical conductivity as temperature functions of the crystals (**top of the
crystal,*bottom of the crystal).

Fig. 5. Effect of dopant content on the electrical conductivity of 10ScSZ, 10Sc хCeSZ
10Sc1YSZ and 10Sc0.5Ce хYSZ crystals at 1173 K.
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10Sc1YSZ and 10Sc1СеSZ crystals doped with 0.1mol.% Eu2O3
which was used as a spectroscopic probe. Similar studies were
carried out earlier for (ZrO2)1-x(Y2O3)х solid solution crystals over a
wide range of Y2O3 concentrations (x¼ 0.027e0.38) [20]. It was
shown that in this concentration range there are four main types of
optical centers of Eu3þ ions having different crystalline neighbor-
hood. Type I optical centers are Eu3þ cations surrounded by oxygen
seven-vertex and characterized by the presence of an oxygen va-
cancy in the first coordination sphere. Type II optical centers form if
an Eu3þ cation is in the center of an oxygen eight-vertex, i.e., there
is no oxygen vacancy in the first coordination sphere, but one is
present in the second coordination sphere. Type III optical centers
have three oxygen vacancies at the diagonal positions of the cube,
i.e., Eu3þ is in the center of an oxygen six-vertex, i.e., two oxygen
vacancies are present in the first coordination sphere. Type IV op-
tical centers are characterized by an eightfold coordination and the
absence of oxygen vacancies in the nearest crystalline neighbor-
hood. The presence of a specific type of Eu3þ optical centers de-
pends on the concentration of the stabilizing oxide and the
crystalline structure of the material.

We analyzed the luminescence spectra of the 10Sc1YSZ and
10Sc1CeSZ crystals taking into account the results obtained for
(ZrO2)(1-x)(Y2O3)х crystals. Fig. 6 shows the luminescence spectra of
the 10Sc1YSZ and 10Sc1СеSZ crystals for the 5D0/

7F0, 5D0/
7F1

and 5D0/
7F2 transitions of the Eu3þ ions during excitation of the

5D1 (lex¼ 532 nm) level at 300 and 77 K. For comparison Fig. 6 also
shows the luminescence spectra of the 12YSZ crystal [16] in which
the Y2O3 concentration was comparable with the overall concen-
tration of the stabilizing oxides in the crystals studied in this work.

The luminescence spectra for the 5D0/
7F1 transition of the Eu3þ

ions in the 10Sc1YSZ crystal recorded after excitation of the 5D1 level
of the Eu3þ ions at 300 and 77 K have the same spectral bands as for
the 12YSZ crystal. However, there are differences in the intensity
ratios of the spectral bands corresponding to different Eu3þ optical
centers in the 10Sc1YSZ and 12YSZ crystals. For example, in the
300 K luminescence spectra of the 10Sc1YSZ crystals (Fig. 5a) the
intensity of the bands corresponding to type II optical centers is
higher than the intensity of the band corresponding to type I optical
centers, whereas in the luminescence spectra of the 12YSZ crystals
the intensity ratio of these bands is contrary.

In the 77 K luminescence spectra (Fig. 6b) the intensity ratio of
the bands corresponding to the type I and II optical centers in the
10Sc1YSZ crystals is lower compared with that ratio for the 12YSZ
crystals. The differences in the luminescence spectra of Eu3þ ions in
the 10Sc1YSZ and 12YSZ crystals suggest that the fraction of the
type I optical centers having an oxygen vacancy in the first coor-
dination sphere in the 10Sc1YSZ crystals is lower compared with
that in the 12YSZ crystals.

The most significant differences are between the luminescence
spectra of the 10Sc1СеSZ and 12YSZ crystals. The luminescence
spectra of the 10Sc1СеSZ crystals for the 5D0/

7F1 transition of the
Eu3þ ions at 300 K have an intense band in the 586e589 nm region
(type II optical centers). A band peaking at 585.5 nm and corre-
sponding to type I optical centers is weakly resolved against the
short-wave side of that band. Thus, the fraction of the type I optical



Fig. 6. Luminescence spectra of 10Sc1YSZ, 10Sc1СеSZ and 12YSZ crystals caused by
5D0/

7F0, 5D0/
7F1 and 5D0/

7F2 transitions of Eu3þ ions during excitation of the 5D1

(lex¼ 532 nm) level at (a) 300 and (b) 77 K. Numbers show types of Eu3þ optical
centers.
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centers is even lower in 10Sc1СеSZ than in the 10Sc1YSZ and 12YSZ
crystals.

There are more differences in the luminescence spectra, e.g. for
the 5D0/

7F2 and 5D0/
7F0 transitions of Eu3þ the origin of which

requires further investigation. Thus, spectroscopic studies of the
10Sc1YSZ and 10Sc1СеSZ crystals suggest that the fraction of Eu3þ

ions with a vacancy in the first coordination sphere (type I optical
centers) is lower in the 10Sc1СеSZ crystals than in the 10Sc1YSZ
crystals. Influence of local crystal lattice structure on ionic transport
of oxygen was studied in a series of works [17,18,29e32]. It was
shown that conductivity of materials based on zirconia is governed
not only by quantity of vacancies, but also by their position in
crystal lattice. Computation results showed that oxygen vacancies
situated in a first coordination sphere of dopant ion are not active
for oxygen diffusion. Increase of relative ratio of such vacancies
leads to the decrease of ionic conductivity [18].

One can therefore conclude that the mobility of the oxygen ions
and hence the conductivity of the 10Sc1СеSZ crystals should be
higher compared with the 10Sc1YSZ crystals which is in agreement
with the data on the transport parameters of these crystals.

4. Conclusions and future perspectives

Scandia stabilized zirconia-based solid solution crystals co-
doped with ceria and/or yttria were grown by directional melt
crystallization in cold skull.

Study of the phase composition of the crystals with X-ray
diffraction and Raman spectroscopy showed that addition of 0.5
and 1mol.% ceria to 10ScSZ does not stabilize the high-temperature
cubic phase in the entire crystal bulk. Addition of 0.5mol.% Y2O3 to
the crystals increases the quantity of the cubic phase, while addi-
tion of 1mol.% Y2O3 leads to the formation of single-phase cubic
single crystals.

Ceria doping of the 10ScSZ crystals increases their conductivity,
the maximum conductivity occurring at 0.5mol.% ceria. Addition of
1mol.% yttria notably reduces the conductivity. The conductivity of
the 10Sc0.5Ce0.5YSZ crystals is close to that of the 10ScSZ ones,
while the conductivity of the single-phase cubic 10Sc0.5Ce1YSZ
crystals is comparable with that of the 10Sc1YSZ crystals.

Optical spectroscopic study of the local structure of the 0.1mol/
% Eu2O3 doped 10Sc1YSZ and 10Sc1СеSZ crystals allowed us to
identify different types of optical centers. We found that the frac-
tion of trivalent cations having a vacancy in the first coordination
sphere (type I optical centers) is lower in the 10Sc1СеSZ crystals
than in the 10Sc1YSZ crystals.

Zirconia-based crystals stabilized by Scandia and co-doped with
ceria and/or yttria can find their application in the most promising
high-temperature electrochemical devices, which convert chemical
energy of fuel oxidation into electrical power and heat, solid oxide
fuel cells, SOFC.
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