УЛК 544.6.018.42-16+621.352.6

ТРЕХСЛОЙНЫЕ МЕМБРАНЫ ДЛЯ ПЛАНАРНЫХ ТВЕРДООКСИДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ ЭЛЕКТРОЛИТ-ПОДДЕРЖИВАЮЩЕЙ КОНСТРУКЦИИ: ХАРАКТЕРИСТИКИ И ПРИМЕНЕНИЕ¹

© 2020 г. Е. А. Агаркова^{а, *}, Д. А. Агарков^{а, b}, И. Н. Бурмистров^{а, b, **}, О. Ю. Задорожная^с, Д. В. Яловенко^а, Ю. К. Непочатов^с, С. И. Бредихин^{а, b}

^аФедеральное государственное бюджетное учреждение науки Институт физики твердого тела Российской академии наук ул. академика Осипьяна, 2, Черноголовка, Московская обл., 142432 Россия

 Федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)"
Институтский пер., 9, Долгопрудный, Московская обл., 117303 Россия

> ^cAO "HЭB3-Керамикс" просп. Красный, 220, Новосибирск, 630048 Россия *e-mail: stepanova.ea@issp.ac.ru **e-mail: buril@issp.ac.ru

Поступила в редакцию 09.10.2018 г. После доработки 11.12.2018 г. Принята к публикации 04.07.2019 г.

Трехслойные керамические мембраны на основе стабилизированного диоксида циркония для планарных твердооксидных топливных элементов (**TOT9**) были изготовлены методом литья на движущуюся ленту. Внешние слои с составом 94 мол. % ZrO_2 —6 мол. % Sc_2O_3 обеспечивают повышенную механическую прочность, а центральный слой был изготовлен из материала состава 89 мол. % ZrO_2 —10 мол. % Sc_2O_3 —1 мол. % Y_2O_3 , обладающего наиболее высокой анионной проводимостью из ряда твердых растворов ZrO_2 — Y_2O_3 — Sc_2O_3 . Исследование механических характеристик показало, что предел прочности (прочность на изгиб) данных мембран значительно превосходит величину, характерную для однослойных образцов. После исследования анионной проводимости трехслойной керамики методом импедансной спектроскопии в частотном диапазоне от 1 Γ ц до 1 M Γ ц, были изготовлены мембранно-электродные блоки TOT Θ и проведены их электрохимические испытания в условиях работы топливного элемента.

Ключевые слова: многослойные мембраны, анионная проводимость, твердые электролиты, трехточечный изгиб, вольт-амперная характеристика, годограф импеданса

DOI: 10.31857/S0424857020020024

введение

Твердооксидные топливные элементы (**ТОТЭ**) — одна из наиболее эффективных и многообещающих технологий прямого преобразования химической энергии углеводородных видов топлива в электрическую (с коэффициентом полезного действия (**КПД**) до 60%) и тепловую (с суммарным КПД более 90%) энергию [1]. Один из наиболее технологичных и надежных вариантов конструкции мембранно-электродных блоков (**МЭБ**) — планарные топливные элементы с поддерживаю-

щим электролитом [2, 3]. Этот подход позволяет создавать автоматизированные технологические линии для проведения всех операций по изготовлению МЭБ. Полученные топливные элементы отличаются стабильностью характеристик, а также механической прочностью [4]. Методы нанесения, используемые при изготовлении таких топливных элементов, являются дешевыми и технологичными, что позволяет существенно снизить финальную стоимость электрохимических генераторов на базе технологии ТОТЭ.

Ключевым элементом планарных МЭБ ТОТЭ с поддерживающим электролитом является мембрана анионного проводника. Во-первых, именно она несет на себе основные механические на-

¹ Публикуется по материалам V Всероссийской конференции с международным участием "Топливные элементы и энергоустановки на их основе", Суздаль, 2018.

Рис. 1. СЭМ-изображение поверхности (а) и поперечного сечения (б) трехслойных пластин 6ScSZ/10Sc1YSZ/6ScSZ.

грузки, а во-вторых, ее сопротивление составляет около половины полного внутреннего сопротивления топливного элемента [5]. Таким образом, оптимальная толщина несущей мембраны — результат конкуренции противоречащих друг другу принципов оптимизации: уменьшение толщины мембраны приводит к снижению потерь на протекание ионного тока, что положительно влияет на полное внутреннее сопротивление топливного элемента и общую эффективность электрохимической ячейки, а при повышении — улучшаются ее механические характеристики и общая надежность системы.

Эффективно улучшить механические характеристики мембраны анионного проводника позволяет использование многослойных структур [6], в которых часть слоев оптимизированы не по электрохимическим характеристикам, а по механической прочности за счет оптимизации их состава и микроструктуры. Серия наших предыдущих работ [7—9] была направлена на разработку высокоэффективных планарных МЭБ ТОТЭ с поддерживающим электролитом [7—10]. В настоящей статье приводятся результаты исследований электрохимических и механических характеристик трехслойных твердоэлектролитных мембран

отечественного производства и мембранно-электродных блоков, изготовленных на их основе.

МЕТОДИКИ И ОБРАЗЦЫ

В качестве исходного сырья при изготовлении использовались порошки мембран $((Sc_2O_3)_{0.06}-(ZrO_2)_{0.94})$ и 10Sc1YSZ $((Sc_2O_3)_{0.1} (Y_2O_3)_{0.01}$ – $(ZrO_2)_{0.89}$) производства ЗАО "Неохим" (Москва, Россия) [11]. Центральный слой изготавливался из состава 10Sc1YSZ: в предыдущих работах с использованием монокристаллических образцов было показано, что диоксид циркония. допированный 10 мол. % оксида скандия и 1 мол. % оксида иттрия или церия демонстрирует максимальную анионную проводимость [12–14]. Состав 6ScSZ демонстрирует высокие механические характеристики при сохранении достаточной величины анионной проводимости [15, 16]. Порошки были получены методом соосаждения и последующего отжига при различных температурах.

Мембраны анионного проводника были изготовлены методом литья на движущуюся ленту с последующей вакуумной ламинацией листов с различным составом анионного проводника в трехслойный пакет и высокотемпературным отжигом полученных пакетов. Микрофотографии поверхности и изображения поперечного сечения, полученные методом сканирующей электронной микроскопии (СЭМ), образцов пластин приведены на рис. 1. Исследования методом СЭМ выполняли с использованием микроскопа Supra 50VP (CarlZeiss, Великобритания). Как видно из рис. 1а, структура поверхности изготовленной керамики плотная, мелкозернистая, размер зерен не превышает 3 мкм. На изломе (рис. 16) прослеживается трехслойная сэндвич-структура 6ScSZ/10Sc1YSZ/6ScSZ с хорошей адгезией слоев. Толщина слоев 6ScSZ и 10Sc1YSZ — 30 и 80 мкм соответственно. Внешние слои показывают высокую плотность дефектов в виде границ зерен и дефектов упаковки, препятствующую развитию микротрещин, возникающих при деформациях образцов. Центральный слой более однороден, размер отдельных зерен составляет более 5 мкм. границы зерен слабо различимы. Присутствуют отдельные поры размером менее 1 мкм, не образующие связной системы, что не может оказать существенного влияния ни на газопроницаемость, ни на транспортные характеристики изготовленных мембран. Изготовленные мембраны имели форму квадрата с закругленными углами со стороной 100 и 50 мм (рис. 2).

Электропроводные и механические свойства изготовленных мембран сравнивались с аналогичными свойствами мембран анионного проводника состава 10Sc1CeSZ ((Sc_2O_3)_{0.1}–(CeO_2)_{0.01}–(ZrO_2)_{0.89}) толщиной 150 мкм производства H.C. Starck (Гер-

мания) и однослойной мембраны анионного проводника состава 10Sc1YSZ толщиной 240 мкм производства АО "НЭВЗ-Керамикс" (Новосибирск, Россия) [10].

Прочностные характеристики были оценены методом трехточечного изгиба с помощью установки Instron 1195. Образцы размером 24 × 9 мм закреплялись с помощью специальной оснастки из монокристаллического сапфира для измерений методом трехточечного изгиба; расстояние между крайними нижними точками контакта составляло 21 мм; верхняя точка приложения усилия находилась на равных расстояниях от нижних точек контакта (рис. 3). Деформация образцов проводилась со скоростью 0.5 мм/мин при комнатной температуре. Прочность на изгиб рассчитывалась по следующей формуле (1):

$$\sigma = \frac{3Fl}{2ah^2},\tag{1}$$

где F — предельная механическая нагрузка, при которой происходит разрушение мембраны, l — расстояние между крайними точками контакта, a — ширина образца, h — его толщина.

Для измерения транспортных свойств двух-контактным 4-проводным методом были изготовлены плоскопараллельные пластины размером 7×7 мм², на которые были нанесены платиновые электроды (платиновая паста CL11-5100 производства Heraeus GmbH, Германия) с последующим отжигом при температуре 950°C в течение 10 мин.

Исследования температурной зависимости анионной проводимости проводились на анализаторе импеданса Solartron SI 1260 в температурном интервале от 350 до 850°С с шагом 50°С. Частотный диапазон измерений — от 1 Гц до 1 МГц, амплитуда сигнала — 24 мВ. Примеры годографов импедансных спектров образцов анионных мембран однослойной (1 — H.C. Starck, 3 — АО "НЭВЗ-Керамикс") и трехслойной (2 — АО "НЭВЗ-Керамикс") конструкции, полученные на воздухе при 350°С, приводятся на рис. 4. Анализ спектров проводился с помощью программного пакета ZView с применением метода эквивалентных схем.

На основе трехслойных пластин размером $50 \times 50 \text{ мм}^2$ были изготовлены мембранно-электродные блоки с многослойными композиционными электродами на основе порошков GDC ($Ce_{0.9}Gd_{0.1}O_{2-\delta}$, FuelCellMaterials, США) и LSM (($La_{0.8}Sr_{0.2})_{0.95}MnO_{3-\delta}$, ИФТТ РАН) для катода и GDC, NiO (Aldrich, США) и 10Sc1CeSZ ($89 \text{ мол. } \% \text{ ZrO}_2 + 10 \text{ мол. } \% \text{ Sc}_2O_3 + 1 \text{ мол. } \% \text{ CeO}_2$, Qingdao Terio Corporation, Китай) для анода. Исходные материалы проходили предварительную термическую обработку [17], на их основе готовились композиционные порошки путем перемола в планетарной мельнице. Катод и анод наносили

Рис. 2. Фотография трехслойных пластин состава 6ScSZ/10Sc1YSZ/6ScSZ.

Рис. 3. Схема и фотография сапфировой вставки для измерения механической прочности на изгиб планарных образцов твердого электролита.

Рис. 4. Годографы импеданса образцов анионных мембран производства: $I-{\rm Stark}, 2$ и $3-{\rm OAO}$ "НЭВЗ-керамикс" трехслойной и однослойной конструкции, соответственно, полученные на воздухе при температуре 350°C. Кругами, треугольниками и ромбами отмечены точки, отвечающие частотам $1~{\rm M}\Gamma$ ц, $10~{\rm k}\Gamma$ ц и $100~{\rm \Gamma}$ ц соответственно.

Рис. 5. Структура слоев многослойных керамических мембранно-электродных блоков (a), а также изображение поперечного сечения, полученное методом СЭМ (б).

методом трафаретной печати. После их нанесения топливные элементы подвергались совместному спеканию при 1350° С. Площадь изготовленных электродов составила 16 см^2 (квадрат $40 \times 40 \text{ мм}^2$). Фотография и изображение поперечного сечения, полученное методом СЭМ, показаны на рис. 5.

Электрохимические характеристики изготовленных образцов топливных элементов исследовались на газо-температурном стенде при рабочей температуре 850° С, в качестве окислителя и топлива использовались смеси $O_2/N_2 = 21/79$ и $H_2/N_2 = 50/50$, соответственно. Вольт-амперные характеристики и годографы импедансных спектров были получены с помощью потенциостатагальваностата и анализатора импеданса Reference 3000 с приставкой Reference 30K Booster (Gamry, Италия). Импедансные спектры измерялись в диапазоне $0.1\ \Gamma_L-300\ \kappa\Gamma_L$ при постоянной токовой нагрузке $0.44\ A/cm^2$, амплитуда переменного сигнала $20\ MB$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Механические характеристики

В предыдущих работах было показано [7], что при снижении толщины несущей мембраны менее 250 мкм дальнейшие операции по изготовлению электродной системы сильно осложнены повышенной хрупкостью пластины твердого электро-

Рис. 6. Нагрузочные кривые, полученные методом трехточечного изгиба при комнатной температуре для: I — мембрана производства H.C. Starck, 2 и 3 — однослойная и трехслойная мембраны производства AO "НЭВЗ-Керамикс", соответственно.

лита. Для улучшения механических характеристик мембран электролита предложено использовать трехслойную структуру, где центральный слой, обеспечивающий минимальное сопротивление транспорту анионов кислорода, изготавливается из полностью стабилизированного диоксида циркония состава $(Sc_2O_3)_{0.1}-(Y_2O_3)_{0.01}-(ZrO_2)_{0.89}$. Для изготовления внешних слоев был использован тетрагональный $(Sc_2O_3)_{0.06}-(ZrO_2)_{0.94}$, показывающий высокую плотность протяженных дефектов в спеченной керамике [18], что эффективно предотвращает распространение микротрещин и улучшает механические характеристики трехслойного пакета.

Примеры нагрузочных кривых, полученных методом трехточечного изгиба, приводятся на рис. 6. Испытания проводились на 6 образцах каждого вида, после чего результирующие величины усреднялись. Усредненные по сериям измерений результаты сравнительных механических испытаний образцов представлены в табл. 1.

Как видно из рис. 6 и табл. 1, трехслойные мембраны демонстрируют лучшие характеристики по значению поперечного линейного прогиба под нагрузкой до разрушения (до 1.4 мм против менее 0.5 и 1 мм для однослойных мембран). Средняя предельная прочность на изгиб трехслойной мембраны составляет 560 МПа (для однослойных она составляет 273 и 286 МПа).

Во время прочностных испытаний мембран для образцов наблюдался значительный прогиб (до 1.4 мм), что сделало невозможным получение значений модуля Юнга. Для оценки упругого мо-

	1	2	3
Мембраны	H.C. Starck	АО "НЭВЗ-Керамикс", однослойный образец	АО "НЭВЗ-Керамикс", трехслойный образец
Толщина, мкм	150	240	140
Средняя величина предельного прогиба, x , мм	0.66 ± 0.06	0.37 ± 0.02	1.255 ± 0.04
Средняя величина предельной прочности σ, МПа	273 ± 25	286 ± 17	560 ± 25
Среднее отношение предельной прочности к максимальному прогибу σ/x , МПа/мм	413 ± 10	774 ± 30	445 ± 6

Таблица 1. Результаты исследования механических характеристик мембран анионного проводника

дуля использовались значения отношения предельной прочности к максимальному прогибу, при котором происходило разрушение образца. Полученная величина для трехслойной мембраны АО "НЭВЗ-Керамикс" и мембраны производства компании H.C. Starck составила 445 и 413 МПа/мм, что почти в 2 раза меньше, чем у однослойной мембраны производства АО "НЭВЗ-Керамикс". Можно сделать вывод, что упругие характеристики изготовленных мембран определяются в большей степени толщиной керамического листа, а не используемым материалом. Таким образом, уменьшение толщины несущего электролита и, как следствие, величины упругого модуля позволяет проводить значительную деформацию изготовленных мембран, не приводящую к появлению критических напряжений в несущей мембране, а использование трехслойной структуры существенно улучшает прочностные характеристики изделия.

Транспортные характеристики

На рис. 7 приводится температурная зависимость полной (без учета одно- или трехслойной структуры) ионной проводимости исследуемых мембран. Для сравнения на рис. 7 показаны данные по монокристаллам 6ScSZ и 10Sc1YSZ [12, 19]. Проводимость однослойных мембран близка к проводимости монокристалла 10Sc1YSZ, что свидетельствует о незначительном влиянии микроструктурных факторов на транспортные свойства исследуемых электролитов. В свою очередь, проводимость трехслойной мембраны во всем температурном диапазоне лежит между кривыми монокристаллов 6ScSZ и 10Sc1YSZ, что свидетельствует как о хорошей адгезии слоев, так и об отсутствии дополнительных слабо проводящих фаз в области контакта слоев керамического пакета.

В табл. 2 приведены значения удельной проводимости керамических и монокристаллических образцов при 850°C и энергий активации в температурном интервале 600-850°C. Величина ионной проводимости трехслойной мембраны во всем температурном диапазоне несколько ниже значений для однослойных мембран и достигает 0.095 См/см при 850°С, что, однако, существенно превосходит проводимость кристалла 6ScSZ (0.036 См/см). Таким образом, применение трехслойной структуры с 6ScSZ в качестве одного из компонентов, обладающим относительно низкой ионной проводимостью, приводит к снижению полной ионной проводимости пакета не более чем на 30% (850°C) относительно проводимости монокристалла состава 10Sc1YSZ.

Рис. 7. Температурная зависимость удельной проводимости мембран в сравнении с проводимостью монокристаллических 6ScSZ и 10Sc1YSZ [12, 19].

10Sc1YSZ [12, 19]

6ScSZ [19]

850°С) планарных керамических меморан, а также монокристаллов 65c5Z и 105c1Y5Z [12, 19]				
Мембрана или монокристалл	Значение удельной проводимости при 850°C, См/см	Энергия активации для $T = 600 - 850^{\circ}\text{C}$, эВ		
АО "НЭВЗ-Керамикс" (1 слой)	0.160	0.91		
АО "НЭВЗ-Керамикс" (3 слоя)	0.095	0.86		
H.C. Starck	0.111	0.71		

0.134

0.036

Таблица 2. Удельная проводимость при 850°C и энергия активации в высокотемпературном диапазоне (600—850°C) планарных керамических мембран, а также монокристаллов 6ScSZ и 10Sc1YSZ [12, 19]

Мембранно-электродные блоки

На рис. 8 представлена вольт-амперная и мощностная характеристики МЭБ, полученные с использованием искусственного воздуха в качестве окислителя и водородо-азотной смеси с соотношением $H_2/N_2 = 50/50$ в качестве топлива при 850°С. Напряжение открытой цепи составляет около 1.1 В, что свидетельствует о газоплотности и отсутствии электронной проводимости мембраны. Плотность снимаемой мощности при рабочем напряжении 0.7 В превышает значение 300 мВт/см^2 , что подтверждает достаточно низкое внутреннее сопротивление МЭБ.

Для определения структуры внутреннего сопротивления изготовленного МЭБ проводились измерения импедансных спектров. На рис. 9 представлен годограф импедансного спектра

Рис. 8. Вольт-амперная и мощностная характеристика мембранно-электродного блока, изготовленного на основе трехслойной мембраны.

МЭБ ТОТЭ, полученного при постоянной токовой нагрузке $I_{\text{load}} = 0.44 \text{ A/cm}^2$. Анализ импедансного спектра показал, что полное внутреннее сопротивление при данных условиях измерения составляет около 0.62 Ом/см², а омические потери равны 0.28 Ом/см², что составляет около 45% от полного сопротивления МЭБ. Стоит отметить, что ожидаемая величина сопротивления анионной мембраны, полученная из температурной зависимости ионной проводимости (рис. 6), составляет 0.16 Ом/см² (26% внутреннего сопротивления ТОТЭ), что свидетельствует о наличии дополнительных омических потерь, связанных с влиянием слоевого сопротивления электродов и/или особенностями морфологии внутренних интерфейсов МЭБ.

0.81

0.67

Таким образом, на основании исследований электрохимических характеристик можно сделать вывод о пригодности полученных трехслойных мембран твердого электролита для использования в качестве несущего элемента планарных ТОТЭ с поддерживающим электролитом. При этом для увеличения эффективности топливных элементов на несущем электролите необходимо улучшение как каталитических, так и транспортных характеристик электродов МЭБ ТОТЭ.

Рис. 9. Годограф импедансного спектра мембранноэлектродного блока, изготовленного на основе трехслойной мембраны.

ЗАКЛЮЧЕНИЕ

Показано, что использование при изготовлении трехслойной структуры мембран на основе диоксида циркония относительно низкопроводящих компонентов (6ScSZ) приводит к ожидаемому снижению величины ионной проводимости, однако такое снижение не превосходит 30% относительно эталонного образца монокристаллического 10Sc1YSZ. Электрохимические испытания МЭБ с трехслойными мембранами показали достаточно высокую плотность снимаемой мощности, составляющую более 300 мВт/см² при напряжении на ячейке 0.7 В и воздухе в качестве окислителя. Анализ импедансных спектров МЭБ показал, что омический вклад в полное внутреннее сопротивление образцов не превышает 45%.

ФИНАНСИРОВАНИЕ РАБОТЫ

Данная работа выполнена при финансовой поддержке гранта РНФ 17-79-30071 "Разработка научно обоснованных путей оптимизации мощностных и массогабаритных характеристик батарей ТОТЭ планарной конструкции и создание топливного процессора для высокоэффективных транспортных и стационарных энергоустановок". Методика исследования температурной зависимости анионной проводимости мембран была разработана в рамках государственного задания ИФТТ РАН.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Choudhury, A., Chandra, H., and Arora, A., Application of solid oxide fuel cell technology for power generation—A review, *Renew. Sustainable Energy Rev.*, 2013, vol. 20, p. 430.
- 2. Stelter, M., Reinert, A., Mai, B.E., and Kuznecov, M., Engineering aspects and hardware verificat solid oxide fuel cell stack design, *J. Power Sources*, 2006, vol. 154, p. 448.
- 3. Menzler, N.H., Malzbender, J., Schoderböck, P., Kauert, R., and Buchkremer, H.P., Sequential tape casting of anode-supported solid oxide fuel cells, *Fuel Cells*, 2014, vol. 14, p. 96.
- 4. Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., and Kuebler, J., Strength of an electrolyte supported solid oxide fuel cell, *J. Power Sources*, 2015, vol. 297, p. 158.
- 5. Hsieh, Y.D., Chan, Y.H., and Shy, S.S., Effects of pressurization and temperature on power generating characteristics and impedances of anode-supported and electrolyte-supported planar solid oxide fuel cells, *J. Power Soruces*, 2015, vol. 299, p. 1.

- Haydn, M., Ruettinger, M., Franco, T., Uhlenbruck, S., Jung, T., and Ortner, K., *U.S. Patent*, 2015, US 20160118680 A1.
- 7. Burmistrov, I., Agarkov, D., Bredikhin, S., Nepochatov, Y., Tiunova, O., and Zadorozhnaya, O., Multilayered electrolyte-supported SOFC based on NEVZ-Ceramics membranes, *ECS Trans.*, 2013, vol. 57, iss. 1, p. 917.
- 8. Бурмистров, И.Н., Агарков, Д.А., Цыбров, Ф.М., Бредихин, С.И. Изготовление мембранно-электродных блоков ТОТЭ методом совместного спекания электродов. Электрохимия. 2016. Т. 52. С. 749. [Burmistrov, I.N., Agarkov, D.A., Tsybrov, F.M., and Bredikhin, S.I., Preparation of membrane-electrode assemblies of solid oxide fuel cells by co-sintering of electrodes, Russ. J. Electrochem., 2016, vol. 52, p. 669.]
- 9. Бурмистров, И.Н., Агарков, Д.А., Коровкин, Е.В., Яловенко, Д.В., Бредихин, С.И. Изготовление мембранно-электродных блоков твердооксидных топливных элементов методом совместного спекания электродов при повышенных температурах. Электрохимия. 2017. Т. 53. С. 980. [Burmistrov, I.N., Agarkov, D.A., Korovkin, E.V., Yalovenko, D.V., and Bredikhin, S.I., Fabrication of membrane-electrode assemblies for solid oxide fuel cells by joint sintering of electrodes at high temperature, Russ. J. Electrochem., 2017, vol. 53, p. 873.]
- Тиунова, О.В., Задорожная, О.Ю., Непочатов, Ю.К., Бурмистров, И.Н., Курицына, И.Е., Бредихин, С.И. Керамические мембраны на основе скандий-стабилизированного ZrO₂, полученные методом пленочного литья. Электрохимия. 2014. Т. 50. С. 801. [Tiunova, O.V., Zadorozhnaya, O.Yu., Nepochatov, Yu.K., Burmistrov, I.N., Kuritsyna, I.E., and Bredikhin, S.I., Ceramic Membranes Based on Scandium-Stabilized ZrO₂ Obtained by Tape Casting Technique, Russ. J. Electrochem., 2014, vol. 50, p. 719.]
- 11. Соколов, П.С., Карпюк, П.В., Досовицкий, Г.А., Волков, П.А., Лысков, Н.В., Слюсар, И.В., Досовицкий, А.Е. Наноструктурированные порошки на основе стабилизированного оксида циркония для твердооксидные топливных элементов. Электрохимия. 2018. Т. 54. С. 536. [Sokolov, P.S., Karpyuk, P.V., Dosovitskiy, G.A., Volkov, P.A., Lyskov, N.V., Slyusar, I.V., and Dosovitskiy, A.E., Stabilized zirconia-based nanostructured powders for solid-oxide fuel cells, Russ. J. Eletrochem., 2018, vol. 54, p. 464.]
- 12. Курицына, И.Е., Бредихин, С.И., Агарков, Д.А., Борик, М.А., Кулебякин, А.В., Милович, Ф.О., Ломонова, Е.Е., Мызина, В.А., Табачкова, Н.Ю. Исследование электротранспортных характеристик керамических и монокристаллических материалов состава (ZrO₂)_{0.89}(Sc₂O₃)_{0.10}(Y₂O₃)_{0.01}. Электрохимия. 2018. Т. 54. С. 554. [Kuritsyna, I.E., Bredikhin, S.I., Agarkov, D.A., Borik, M.A., Kulebyakin, A.V., Milovich, F.O., Lomonova, E.E., Myzina, V.A., and Tabachkova, N.Yu., Russ. J. Electrochem., 2018, vol. 54, p. 481.]
- 13. Агарков, Д.А., Борик, М.А., Бредихин, С.И., Кулебякин, А.В., Курицына, И.Е., Ломонова, Е.Е., Милович, Ф.О., Мызина, В.А., Осико, В.В., Агаркова, Е.А., Табачкова, Н.Ю. Структура с транспортные свойства кристаллов твердых растворов на

- основе диоксида циркония, солегированных оксидами скандия и церия. *Электрохимия*. Т. 54. С. 530. [Agarkov, D.A., Borik, M.A., Bredikhin, S.I., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Agarkova, E.A., and Tabachkova, N.Yu., Structure and Transport Properties of Zirconia-Based Solid Solution Crystals Co-Doped with Scandium and Cerium Oxides, *Russ. J. Electrochem.*, 2018, vol. 54, p. 459.]
- 14. Agarkov, D.A., Borik, M.A., Bublik, V.T., Bredikhin, S.I., Chislov, A.S., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., and Tabachkova, N.Yu., Structure and transport properties of melt grown Sc₂O₃ and CeO₂ doped ZrO₂ crystals, *Solid State Ionics*, 2018, vol. 322, p. 24.
- 15. Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., and Kuebler, J., High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells, *J. Power Sources*, 2015, vol. 273, p. 237.
- 16. Varanasi, C., Juneja, C., Chen, C., and Kumar, B., Electrical conductivity enhancement in heteroge-

- neously doped scandia-stabilized zirconia, *J. Power Sources*, 2005, vol. 147(1–2), p. 128.
- 17. Burmistrov, I., Agarkov, D., Tartakovskii, I., Kharton, V., and Bredikhin, S., Performance optimization of cermet SOFC anodes: an evaluation of nanostructured Ni, *ECS Trans.*, 2015, vol. 68, iss. 1, p. 1265.
- 18. Агарков, Д.А., Бредихин, С.И., Бурмистров, И.Н., Курицына, И.Е., Непочатов, Ю.К., Тиунова, О.В. Мембрана твердого электролита для твердооксидных топливных элементов. Пат. 161024 (Россия). 2016. [Agarkov, D.A., Bredikhin, S.I., Burmistrov, I.N., Kuritsyna, I.E., Nepochatov, Yu.K., and Tiunova, O.V., Membrane of solid electrolyte for solid oxide fuel cells, Patent 161024 (Russia), 2016.]
- Borik, M.A., Bredikhin, S.I., Bublik, V.T., Kulebyakin, A.V., Kuritsyna, I.E., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Ryabochkina, P.A., and Tabachkova, N.Yu., Structure and conductivity of yttria and scandia doped zirconia crysrals grown by skull melting, J. Am. Ceram. Soc., 2017, vol. 100(12), p. 5536.