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We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity
of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton modes using an
approximation of a large number of quantum wells. The polariton effective masses are found to be very small
and equal to 10–3–10–4 of the free-electron mass. © 2002 MAIK “Nauka/Interperiodica”.
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1 Semiconductor structures allow engineering of the
light–matter interaction. The band structure and disper-
sion relation of the coupled mode of exciton and pho-
ton, called a polariton, can be controlled by the struc-
ture design, thereby opening great opportunities for
fundamental studies of exciton and photon physics, as
well as for device applications. Recently, considerable
attention has been devoted to the study of photon–mat-
ter interaction in semiconductor microcavities (MCs)
[1] and photonic band-gap materials [2], i.e., structures
characterized by light-wavelength size. One of the
advantages of polariton-dispersion engineering is the
possibility to construct a bosonic quasiparticle with
extremely small effective mass m. In particular, due to
the small density of states in such a system, a statisti-
cally degenerate gas of polaritons may arise even at
high temperatures and small densities (the temperature
at which a quasi-2D gas of noninteracting bosonic qua-
siparticles becomes statistically degenerate is T0 =
π"2n/2mkB [3]).

In this paper, we consider the system of polaritons in
a periodic quantum-well (PQW) structure with a period
close to half the exciton resonance wavelength, i.e., in
a Bragg structure. In PQW structures, due to the total
confinement of excitons in QWs, the propagation of
polaritons through the PQW is possible only because of
the electromagnetic transfer of excitation through the
barrier layers; in this sense, they are Wannier–Mott
excitons for in-plane motion and Frenkel excitons for
motion in the growth direction [4]. Before there were
any experiments, several unique properties of polari-
tons in PQW structures had been predicted [4–9].
Ivchenko et al. [8] made two related and significant
predictions. First, in an infinite Bragg structure with d =
λ/2, the normal light wave is a standing wave character-
ized by two wave vectors Q = ±π/d with a field E(z) ∝
sin(πz/d) with nodes at every QW position. This wave

1 This article was submitted by the authors in English.
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does not couple to excitons, because the optical transi-

tion matrix element ∝ E(z)Ψ(z) is minimal and,

therefore, Bragg PQW structures with a large number
of QWs poorly emit and absorb resonant light in the
normal direction [8]. Second, although it is a poor emit-
ter, the Bragg structure is an excellent reflector: due to
constructive interference between the light waves
reflected by various QWs, the reflectivity of the Bragg
structure is dramatically enhanced; in fact, in reflectiv-
ity or transmission, a set of N QWs with d = λ/2 is
equivalent to a single QW (SQW) with a radiative cou-
pling coefficient N amplified times over the value for an
SQW [8].

The theoretical predictions initiated intense experi-
mental studies. A strong amplification of the reflectance
in Bragg PQW structures was observed in [10]. The
enhancement of the signal decay rate in the Bragg
structure was observed in the degenerate four-wave-
mixing experiments in reflection geometry [11].
Recently, almost 100% reflectivity and the onset of a
photonic band gap were observed in a Bragg PQW
sample with N = 100 QWs [12]. These experiments
confirmed that the constructive interference between
the light waves reflected by various QWs can be treated
as a huge (∝ N) enhancement of the radiative coupling
coefficient [8]. Further resonant excitation studies
revealed that the radiative coupling effects dominate not
only the transmission, reflection, and absorption spectra
but also the resonance Rayleigh scattering [13, 14].

In this paper, we study polariton-dispersion rela-
tions of high-quality Bragg and nearly Bragg PQW
structures with d ≈ λ/2. In our experiments, e–h pairs
are generated by continuum absorption and lose energy
by incoherent processes, populating low-energy carrier
and polariton states. As shown in [12], under these con-
ditions the PL spectra of a PQW structure cannot be
explained by the radiatively uncoupled incoherent
emission of 100 individual QWs but are dominated by
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the cooperative emission from radiatively coupled
QWs, i.e., by polaritonic states. Radiative coupling of
the QWs occurs without any external coherent exci-
tation.

The non-AR-coated PQW sample (DBR28) con-
tains N = 100 8.5-nm-thick In0.04Ga0.96As QWs
between GaAs barriers (for details, see [12]). The use
of low-In-concentration QWs ensures that the back-
ground refractive indices of the well and barrier are
nearly identical, thereby eliminating the photonic band
gap arising from a distributed Bragg-mirror-like reflec-
tivity. A decrease in flux with increasing radius during
the growth on a rotating substrate provides an experi-
mental way to continuously scan d. For cw PL studies,
the excitation was provided either by an HeNe laser
(excitation energy "ω = 1.96 eV) or by a Ti : sapphire
laser. The excitation was focused to a 50-µm spot.
Experiments were performed in a He4 cryostat at T =
1.5 K.

The theoretical analysis of the polariton mode dis-
persion is based on the transfer-matrix approach that
describes light propagation through a multilayer struc-
ture by solving the Maxwell wave equation including
the corresponding boundary condition at each interface
(LDT). According to [5, 9], the eigenmodes of the self-
consistently coupled light–QW–exciton system in an
infinite PQW structure obey the dispersion relation

Fig. 1. (a) The scheme showing the dispersions of polaritons
in PQW structures. In the infinite periodic structures, the
polariton dispersions in the PQW growth direction (dotted
lines) are constructed from the photon dispersions (bold
lines), their replicas (thin lines), and exciton dispersion
(dotted line). The polariton branches obey Eq. (2). The tran-
sition from an infinite to finite number of QWs, N, corre-
sponds to the transition from continuous Q to discrete
modes. For large N, the energies of the discrete modes

(dots) fall on the continuous branch dispersions at Qj = ,

j = 1, …, N (vertical dashed line). (b) An example of in-
plane dispersions of polariton mode branches calculated
using Eq. (2). Dotted lines represent dispersions of the exci-
ton and standing waves of light. The polariton mode disper-
sions (solid lines) are formed by anticrossing dispersions of
the exciton and photon.

π
d
--- j

N
----
(1)

where Q is the wave vector of light along the PQW
growth direction reduced to the first Brillouin zone, k =

ω/"c, kz = , kx is the in-plane polariton wave
vector, ω0 is the exciton resonance energy, and Γ0 and Γ
are, respectively, the radiative and nonradiative exciton
damping constants in a single QW. As was shown in
[9], for finite number N of QWs, the eigenmodes cor-
respond to the discretized values of the complex wave
vector Q. For large N, the values of wave vector tend to
become real and equally spaced, and Eq. (1) trans-
forms to

(2)

where Qj = , j = 1, …, N. The roots of Eq. (2) ω =

ω(j, kx) correspond to the eigenenergies of the polariton
modes. The polariton energies also tend to become real
for large N and, therefore, since the imaginary part of
energies yields the radiative width of PQW polaritons,
polariton states become stationary in the high-N limit,
similar to bulk polaritons [7, 9].

The origin of polariton modes in PQW structures
can be understood with the schemes shown in Fig. 1.
Figure 1a schematically shows the dispersion of polari-
tons in the PQW growth direction. For infinite N, the
polariton dispersions are constructed from the photon
dispersions, their replicas, and exciton dispersion. We
concentrate below on the energy region close to the
exciton resonance. Around ω0, there are three PQW
polariton branches originating from the folded photon
dispersion and exciton dispersion: the upper (U), the
middle (M), and the lower (L) one. The splitting
between the branches at the anticrossing point at Q =
π/d, proportional to the electromagnetic coupling
between the photon and exciton, is small compared to
ω0 and is exaggerated in Fig. 1a. For finite and large N,
the energies of the discrete modes fall on the continu-

ous branch dispersions at the momenta Qj = , j = 1,

…, N for the jth polariton mode; i.e., the continuous
branch and discrete modes obey Eq. (2) with the same
r.h.s. We mark the upper jth mode as Uj and so on. Fig-
ure 1a presents the case of a Bragg structure with d =

λ/2, i.e., with ω0 = πc/d ; the modification of the
scheme for different d is straightforward. An example
of the in-plane dispersions for U, M, and L polariton
branches is shown in Fig. 1b. The dispersions were cal-
culated using Eq. (2) for d/λ = 0.501, Qj = 0.99π/d, and
Γ0 = 20 µeV. The polariton modes are formed by the
anticrossing dispersions of the exciton and standing
waves of light (Fig. 1b). Note that the mode MN is a

Qd( )cos kzd( )cos
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standing wave with a field E(z) ∝  sin(πz/d) with nodes
at every QW position ∀ d and ∀ kx, and its optical tran-
sition matrix element is zero.

Figure 2a shows the cw spectra of PL emitted in the
direction normal to the PQW structure. Spectra are
taken from different positions on the sample corre-
sponding to different periods d, as labeled in Fig. 2a.
Figures 2b and 2c present the measured PL energy and
intensity of polariton modes at kx = 0 corrected for the
exciton energy shift due to a change in the QW thick-
ness. The radiative mode splitting well exceeds the
inhomogeneous exciton linewidth. The solid and
dashed lines show positions of the eigenmodes at kx = 0
calculated using Eq. (2). The best agreement between
the experiment and Eq. (2) is achieved using Γ0 =
20 µeV (dashed lines). The linear fit to the HWHM of
reflectivity spectrum vs. N gives Γ0 = 27 µeV [12]. The
eigenmodes calculated using Eq. (2) with Γ0 = 27 µeV
are also shown in Fig. 2b. All polariton modes observed
in the experiment are clearly classified. This confirms
that the QW number N = 100 is large enough to validate
the approximation of Eq. (2) with real and equally
spaced Qj [9].2 Figure 2c shows eigenmodes (solid
lines), reflection dips (triangles), and absorption peaks
(squares) calculated for N = 100 PQW using the
Lorentzian excitonic susceptibility within an LDT
approach [12]. Here, the absorption A is defined as A =
1 – R – T, where R is the reflection and T is the trans-
mission. The best agreement between the experiment
and the theory is achieved with Γ0 = 27 µeV, in agree-
ment with [12]. As expected, PL clearly follows the
absorption; thus, the results of the LDT calculations are
in good agreement with the experiment.

To measure the dispersion of the PQW polariton
modes, we studied angularly resolved PL following
experiments in [15], where this method was applied to
study the dispersion of polaritons in MCs. The disper-
sions of polariton modes are revealed via their PL
energy vs. kx = ksinφ dependence, where φ is the exter-
nal angle between the emitted photon and the direction
normal to the PQW structure. The measured disper-
sions of polariton modes are presented in Fig. 3. The
dashed lines show positions of the eigenmodes calcu-
lated using Eq. (2). Dispersions of the polariton modes
numerically calculated using LDT for 100 QWs (open
squares) are in good agreement with the experimental
data (Fig. 3). The calculation based on Eq. (2) has no
fitting parameter and uses the value of Γ0 obtained from
the fit to the experimental data in Fig. 2. The main result
of the polariton dispersion measurements is that the
polariton effective masses are very small. In particular,
for the mode MN – 1, m ≈ 5 × 10–4m0, they are close to the

2 The calculation of the complex wave vectors Q by using the
transfer matrix of a finite 100-QW structure [9] shows that there
is a finite imaginary part for periods where the corresponding
mode is bright. This implies that the large-N approximation is not
validated over the whole range of periods.
JETP LETTERS      Vol. 76      No. 10      2002
effective mass of microcavity polaritons. This agree-
ment is natural, because the polariton dispersions are
determined by the anticrossing dispersions of an exci-
ton and standing waves of light both for PQWs and
MCs. Note that small density-of-states effective mass
[1/m = 2/"2∂E/∂(k2)] is characteristic of most of the
polariton modes (Fig. 3).

Fig. 2. (a) PL spectra in the normal direction in the reflec-
tion geometry for the non-AR-coated N = 100
In0.04Ga0.96As/GaAs PQW structure under cw nonresonant
excitation at 1.96 eV. Spectra are taken from different posi-
tions on the sample corresponding to different periods d;
T = 1.5 K. Poor emission in the normal direction at Bragg
resonance, d = λ/2, reveals the vanishing overlap between
the QW excitons and the standing wave of light. (b) The
measured PL energy and intensity of polariton modes vs. d
(grayscale map). The mode energies calculated using
Eq. (2) with Γ0 = 20 µeV (Γ0 = 27 µeV) are shown by
dashed (solid) lines. The mode classification includes the
branch U, M, or L index and the j = 1, …, N number (Fig. 1).
The optically inactive MN mode is absent in the PL spectra.
(c) Absorption peaks (squares), reflection dips (triangles),
and eigenenergies (solid lines) calculated using LDT
through a finite non-AR coated 100 QW structure. Note that
the functional dependence of A on the period is different for
an AR-coated structure.
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We notice that the linewidth of the polariton PL
from the N = 100 PQW sample is sometimes narrower
than the linewidth of exciton PL from SQWs grown
under as nearly as possible identical conditions. The
smallest PL linewidth, ≈0.15 meV, observed in N =

Fig. 3. Measured PL energy of polariton modes (solid
points) in non-AR coated N = 100 In0.04Ga0.96As/GaAs
PQW structure with d = 0.5025 λ vs. kx under cw nonreso-
nant excitation at 1.495 eV; T = 1.5 K. Triangles correspond
presumably to the PL of localized states. The mode energies
calculated using Eq. (2) with Γ0 = 20 µeV are shown by
dashed lines. The polariton effective masses are extremely
small; e.g., the quadratic fit to the mode MN – 1 dispersion at

small kx yields m ≈ 5 × 10–4m0. The calculated absorption
peaks using a Lorentzian excitonic susceptibility for the
propagation through a 100-QW non-AR coated PQW struc-
ture with Γ0 = 27 µeV are shown by open squares. 
100 PQW at d ≈ 0.5025λ is ≈4 times narrower than the
exciton PL linewidth in the SQWs. The effect of line
narrowing due to the radiative coupling between the
QWs clearly dominates over the broadening effects
originating from the inhomogeneities of QW thickness,
etc.
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