Современные методы исследования кислородной нестехиометрии оксидных материалов

М.В. Патракеев

ИХТТ УрО РАН

Школа молодых ученых «Современные аспекты высокоэффективных топливных элементов и энергоустановок на их основе» 16-17 ноября 2017 года г. Черноголовка, Московская обл.

•Термогравиметрия

•Вольюмометрия

•Нейтронная дифракция

•Кулонометрическое титрование

•Основные особенности

•Погрешности метода

•Приемы повышения точности

•Примеры реализации

•Примеры использования результатов

Влияние кислородной стехиометрии на структуру

SrFeO₃ SrFeO_{2.875} SrFeO_{2.75} SrFeO_{2.5}

Влияние кислородной стехиометрии на проводимость

SrFeO_{3-δ}

 $\delta = [V_o]$

 $p = [Fe^{4+}]$

 $n = [\text{Fe}^{2+}]$

Влияние кислородной стехиометрии на термомеханические свойства

Stuart B. Adler Chemical Expansivity of Electrochemical Ceramics J. Am. Ceram. Soc., 84 [9] 2117–19 (2001)

Измерение кислородной стехиометрии

$$MO_n = MO_{n-\delta} + \frac{\delta}{2}O_2$$

Контроль массы оксида

Контроль давления кислорода

Термогравиметрия

$$\delta = \delta_{\rm ref} + \frac{M_{\rm s}}{m_{\rm s}M_{\rm O}}\Delta m$$

Простота эксперимента

Серийное оборудование

Setaram TG-DSC111 Setaram TAG 2416 Sartorius M25DP Cahn D200 Cahn 1000 NETZSCH STA 449

$$\Delta m_{min} = 10^{-5} \text{ g}$$

$$m_s = 0.1 - 1 g$$

 $\Delta \delta = \pm 0.001$

Термогравиметрия

Onuma S, Yashiro K, Miyoshi S, Kaimai A, Matsumoto H, Nigara Y, Kawada T, Mizusaki J, Kawamura K, Sakai N, Yokokawa H (2004) Solid State Ion 174:287-293

Термогравиметрия

Вольюмометрия

 $\Delta n_{\rm g} = \frac{V}{R} \frac{\Delta p_{\rm O_2}}{T}$

Высокое разрешение Нет ограничений по массе Широкий интервал температур Неизотермичность Чистый кислород

Meuffels P, Naeven R, Wenzl H (1989) Phys C 161:539-548

Вольюмометрия

Meuffels P, Naeven R, Wenzl H (1989) Phys C 161:539-548

McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ion 177:833-842

McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ion 177:833-842

TGA

Bucher E, Egger A, Ried P, Sitte W, Holtappels P (2008) Solid State Ion 179: 1032-1035

McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Chem Mater 18:2187-2193

Prado F, Mogni L, Cuello GJ, Caneiro A (2007) Solid State Ion 178:77-82

Кулонометрическое титрование

$$E = \frac{RT}{4F} \ln\left(\frac{p_{\rm H}}{p_{\rm L}}\right)$$

$$E_{O_2/air} \approx 30 mV$$

$$\mathbf{J}_{\mathbf{O}_2} = \frac{\mathbf{I}_{\mathbf{i}}}{\mathbf{4} \cdot \mathbf{F}}$$

 $1\text{mA} \approx 4.84 \frac{\mu g}{\min}$

Кулонометрическое титрование

Разрешающая способность СТ:

 $\Delta E \sim 10^{-5} V$ $V = 1 \text{ cm}^3$ T = 1000 K $\sim 10^{-8} \text{ mol O}_2$

Разрешающая способность TGA: 10⁻⁵ g ~10⁻⁶ mol O₂

Погрешность кулонометрического титрования

$$Er_{\rm CT} = Er_{\rm F} + Er_{\rm V} + Er_{\rm eq} + Er_{\rm YSZ} + Er_{\rm I}$$

Электрохимическая проницаемость YSZ

$$\sigma_{i} = 1.63 \ 10^{2} \exp\left(-\frac{0.79 \text{ eV}}{kT}\right)$$

$$\sigma_{n} = 1.31 \ 10^{7} \exp\left(-\frac{3.88 \text{ eV}}{kT}\right) p_{0_{2}}^{-1/4}$$

$$\sigma_{p} = 2.35 \ 10^{2} \exp\left(-\frac{1.67 \text{ eV}}{kT}\right) p_{0_{2}}^{+1/4}$$

$$j_{0_{2}} = \frac{RT}{16F^{2}} \frac{s}{l} \int_{p_{0_{2}}^{rot}}^{p_{0_{2}}} \sigma_{amb}(p_{0_{2}}) d\ln p_{0_{2}}$$

Park J-H, Blumental RN (1989) J Electrochem Soc 136:2867-2876

Электрохимическая проницаемость YSZ

Способы минимизации погрешности связанной с натеканием кислорода

$$j_{O_2} = \frac{RT}{16F^2} \frac{s}{l} \int_{p_{O_2}^{ref}}^{p_{O_2}} \sigma_{amb}(p_{O_2}) d\ln p_{O_2}$$

Уменьшение площади YSZ

Оптимизация времени измерений

Увеличение массы образца

Уменьшение градиента активности кислорода

Оценка скорости натекания кислорода

$$j_{O_2} = \frac{RT}{16F^2} \frac{s}{l} \int_{p_{O_2}^{ref}}^{p_{O_2}} \sigma_{amb}(p_{O_2}) d\ln p_{O_2}$$

$$J_{\rm O} = \frac{RT}{Fl} \times \left[\sigma_{\rm p} \left(p_{\rm O_2}^{\rm ref} \right) \times \left\{ \left(\frac{p_{\rm O_2}}{p_{\rm O_2}^{\rm ref}} \right)^{0.25} - 1 \right\} + \sigma_{\rm n} \left(p_{\rm O_2}^{\rm ref} \right) \times \left\{ 1 - \left(\frac{p_{\rm O_2}}{p_{\rm O_2}^{\rm ref}} \right)^{-0.25} \right\} \right]$$

Park CY, Azzarello FV, Jacobson AJ (2006) J Mater Chem 16:3624-3628

$$\mathbf{1}\left[\left(\mathrm{d}p_{\mathrm{O}_{2}}\right)/\mathrm{d}t\right]_{\mathrm{empty}} \rightarrow \left[\left(\mathrm{d}n_{\mathrm{O}_{2}}\right)/\mathrm{d}t\right]_{\mathrm{empty}} \rightarrow \left[\left(\mathrm{d}\Delta\delta\right)/\mathrm{d}t\right]_{\mathrm{leak}}$$

Chatzichristodoulou C, Hendriksen PV (2010) J Electrochem Soc 157:B481-B489

$$\mathbf{2} \quad \overline{\left(\frac{\mathrm{d}\Delta\delta}{\mathrm{d}t}\right)}_{\mathrm{leak}} = \frac{Q_{\mathrm{out}} - Q_{\mathrm{in}}}{2Fnt} \qquad \mathbf{3} \quad \left(\frac{\mathrm{d}\Delta\delta}{\mathrm{d}t}\right)_{\mathrm{leak}} = \left(\frac{\mathrm{d}p_{O_2}}{\mathrm{d}t}\right)_{\mathrm{filled}} \left(\frac{\mathrm{d}\Delta\delta}{\mathrm{d}p_{O_2}}\right)_{\mathrm{filled}}$$

$$I_{\text{leak}} = \alpha \left[\left(p_{O_2}^{\text{ref}} \right)^{\frac{1}{4}} - \left(p_{O_2} \right)^{\frac{1}{4}} \right]$$

Gellings PJ, Bouwmeester HJM (1997) The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, Florida, USA

Определение содержания кислорода

$$\delta = \delta_{\rm ref} + \Delta \delta$$

Синтез с контролем массы образца

Окислительно-восстановительное титрование

Термогравиметрическое восстановление в водороде

Сопоставление с результатами измерения проводимости

На основе анализа результатов измерения нестехиометрии

Определение содержания кислорода

Определение содержания кислорода

Park CY, Jacobson AJ (2005) J Electrochem Soc 152:J65-J73

Особенности реализации метода

V

Расширенный температурный диапазон

Cell 2 $Bi_2V_{0.9}Cu_{0.1}O_{5.5-\delta}$ 5.350 cm 5.348 673 H 5.5-8 5.346 973 K 773 K 873 K 5 4 cm 5.344 5.342 Air 5.340 -2 -7 -6 -1 -5 -3 0 ≡6 $\log (p_{0_2} / \text{atm})$ $||T_1|$ $\|T_3\|$ $\|T_2\|$

Tikhonovich VN, Naumovich EN, Kharton VV, Yaremchenko at. all (2002) Electrochimica Acta 47:3957

Измерение в области низких рО2

Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ion 49:111-118

Измерение в области низких рО2

Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ion 49:111-118

28

Измерение низких значений нестехиометрии

Измерение низких значений нестехиометрии

Lee D-K, Yoo H-I (2001) Solid State Ion 144:87-97

Измерение низких значений нестехиометрии

Lee D-K, Yoo H-I (2001) Solid State Ion 144:87-97

Разборная ячейка для СТ

32

Компенсация градиента активности кислорода

Kuzin BL, Komarov MA (1990) Solid State Ion 39:163-172

Компенсация градиента активности кислорода

Кислородная нестехиометрия SrFe_{0.95}Sn_{0.05}O₃₋₈

35

Концентрация электронных носителей

36

Зависимость 3- δ от pO_2

Кислородная нестехиометрия SrFe_{0.95}Sn_{0.05}O₃₋₈

Table 2

Thermodynamic parameters of reactions (1) and (2) obtained by linear approximation to the data in Fig. 3.

x	$\Delta H_{\rm ox}^{\circ}/{\rm kJ}~{\rm mol}^{-1}$	$\Delta S_{\rm ox}^{\circ}/{ m J}{ m mol}^{-1}{ m K}^{-1}$	$\Delta H_{\rm d}^{\circ}/{\rm kJ}~{ m mol}^{-1}$	$\Delta S_{d}^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1}$
0.05 0.10 0.17	$\begin{array}{c} -89.1 \pm 0.4 \\ -89.7 \pm 0.1 \\ -88.3 \pm 0.2 \end{array}$	$\begin{array}{c} -\ 79.2 \pm 0.4 \\ -\ 80.6 \pm 0.1 \\ -\ 80.4 \pm 0.2 \end{array}$	$\begin{array}{c} 130.8 \pm 0.7 \\ 131.1 \pm 0.8 \\ 135 \pm 1 \end{array}$	$\begin{array}{c} 6.07 \pm 0.6 \\ 5.8 \pm 0.8 \\ 9.5 \pm 0.7 \end{array}$

Электропроводность SrFe_{0.95}Sn_{0.05}O_{3-δ}

Зависимость проводимости от pO_2

Методика ИХТТ МХ СО РАН 2013

PCCP

PAPER

2014, 16, 5527

Cite this: Phys. Chem. Chem. Phys.,

Oxygen release technique as a method for the determination of " $\delta - pO_2 - T$ " diagrams for MIEC oxides[†]

Ilya Starkov, Sergey Bychkov, Alexander Matvienko and Alexander Nemudry*

Oxygen Release from Grossly Nonstoichiometric $SrCo_{0.8}Fe_{0.2}O_{3-\delta}$ Perovskite in Isostoichiometric Mode

dx.doi.org/10.1021/cm40407751 Chem. Mater. 2014, 26, 2113-2120

Ilya A. Starkov, Sergey F. Bychkov, Stanislav A. Chizhik, and Alexandr P. Nemudry*

CHEMISTRY OF MATERIALS

Institute of Solid State Chemistry and Mechanochemistry, SB RAS, 630128 Kutateladze 18, Novosibirsk, Russia

pubs.acs.org/cm

Методика ИХТТ МХ СО РАН 2013

Fig. 14 3D visualization of the phase diagrams for $SrCo_{0.8}Fe_{0.2}O_{3-\delta}$ (a) and $SrFeO_{3-\delta}$ (b) oxides.

Выводы

- Все методы востребованы
- Техника эксперимента совершенствуется Точность измерений растет

Спасибо За внимание!

M.V. Patrakeev, I.A. Leonidov, V.L. Kozhevnikov. Applications of coulometric titration for studies of oxygen non-stoichiometry in oxides. Review J Solid State Electrochem 15 (2011) 931–954.