Спектроскопия комбинационного рассеяния света как метод для изучения материалов (д.ф.-м.н. <u>Илья Иосифович Тартаковский</u>) и ''in-situ'' исследования токообразующих реакций в композиционных электродах ТОТЭ (к.ф.-м.н. <u>Дмитрий Александрович Агарков</u>)

Спектроскопия комбинационного рассеяния света КРС (Рамановская спектроскопия РС) как метод для анализа и изучения материалов

1. Явление комбинационного рассеяния света (эффект Рамана) – основные представления. Правила отбора для процессов неупругого рассеяния света.

2. Примеры спектроскопии комбинационного рассеяния света – КРС (Рамановской спектроскопии – РС):

- проведение анализа химического и фазового состояния различных объектов;
- с высоким пространственным разрешением;
- в условиях резонансного возбуждения.
- 3. Методы спектроскопии КРС (РС) :
 а) возбуждение КР света
 - лазерные источники
 - лазеры с перестраиваемой частотой излучения

b) оптическая многоканальная регистрация; Рамановские спектрометры;

с) микро – Раман.

Рассеяние света

Упругое (Рэлеевское) рассеяние света

(<u>без изменения</u> частоты $\omega_S = \omega_0$)

Данный вид рассеяния возникает как при <u>*динамических*</u> (например, флуктуации плотности жидкости или газа), так и при <u>статических</u> неоднородностях (например, в неоднородных твердых телах).

Аналогичное явление наблюдается для взвешенных частиц в жидкостях и газах и называется рассеянием <u>Тиндаля</u>.

Рассеяние света

Индикатриса рассеяния частицами, малыми по сравнению с $\lambda >> d$

$$I_S \sim 1/\lambda^4 \sim \omega^4$$
 — закон Рэлея

(Голубое небо, красное солнце при восходе и закате)

Молекулярное рассеяние света в чистом веществе

$$I_{\mathbf{S}} = I_0 \frac{\pi^2}{2\lambda^4 L^2} V^* V \overline{(\Delta \varepsilon)^2} (1 + \cos^2 \theta)$$

V* — объем флуктуации, малый по сравнению с длиной волны света, но содержащий много молекул.

$$I_{S} = I_{0} \frac{\pi^{2} V}{2 \sqrt{4} L^{2}} \left(\rho \frac{\partial \varepsilon}{\partial \rho} \right)_{T}^{2} \beta_{T} k T (1 + \cos^{2} \theta) \phi$$
-ла Эйнштейна

ρ — плотность среды, Т — абсолютная температура,
 β_T — изотермическая сжимаемость, V — рассеивающий объем,
 L — расстояние от рассеивающего объема до точки наблюдения

Рассеяние света

Рассеяние света мутной средой (<u>Тиндалевское рассеяние</u>). Формула Рэлея (рассеяние на сферических частицах <mark>d</mark> « λ)

$$I = I_0 \frac{9\pi^2 \varepsilon_0^2 N(V')^2}{2\lambda^4 L^2} \left(\frac{\varepsilon - \varepsilon_0}{\varepsilon + \varepsilon_0}\right)^2 \left(1 + \cos^2 \theta\right)$$

N — число частиц в рассеивающем объеме, V' и ε — объем и диэлектрическая проницаемость частицы, ε_0 — диэлектрическая проницаемость среды, в которой взвешены частицы, θ — угол рассеяния, I_0 — интенсивность падающего света, L — расстояние от рассеивающего объема до точки наблюдения

$$I_{S} \sim 1/\lambda^{4} \sim \omega^{4} - 3 \text{акон Рэлея}$$

(энселтые противотуманные фары)
 $\mathcal{E} = \mathcal{E}_{0} \quad \square \longrightarrow \quad I_{S} = 0$

Рассеяние Ми

Рассеяние Ми наблюдается в случае, когда размеры оптических неоднородностей d сопоставимы с длиной волны света

Для рассеяния Ми характерна более слабая частотная зависимость:

 $I(\theta) \sim \lambda^{-\beta} \sim \omega^{\beta}$, где $\beta < 4$

Диаграмма направленности имеет сложный вид и характеризуется наличием многочисленных экстремумов, интенсивность и угловое положение которых зависит от отношения λ/d . С ростом *d* увеличивается рассеяние назад.

 $d \sim \lambda$

Диаграмма рассеяния красного света (0.65 мкм) на частицах воды радиусом 10 мкм.

Неупругое рассеяние света Комбинационное (КРС), Raman (RS)

Комбинационное рассеяние света (RAMAN)

Схема переходов для процессов неупругого (S - Стоксового и AS - анти-Стоксового) и Рэлеевского рассеяния света

Волновые процессы

С

$$s = a\cos(2\pi nt - kx) \quad a = A(1 + \cos 2\pi mt)$$

$$s = A(1 + \cos(2\pi mt))\cos(2\pi nt - kx) = A\cos(2\pi nt - kx) + A\cos(2\pi mt)\cos(2\pi nt - kx) = A\cos(2\pi nt - kx) + \frac{1}{2}A\cos(2\pi mt)\cos(2\pi nt - kx) + \frac{1}{2}A\cos[2\pi (n + m)t - kx] + \frac{1}{2}A\cos[2\pi (n - m)t - kx]$$

Таким образом, наша волна есть не что иное, как совокупность трех строго монохроматических волн с амплитудами
$$A$$
, $\frac{1}{2}A$ и $\frac{1}{2}A$ и с частотами n , $n + m$ и $n - m$. Совокупность этих трех монохроматическую волну тических волн и составляет заданную немонохроматическую волну

Комбинационное рассеяние света (RAMAN)

Схема уровней энергии и переходов, отвечающих процессам неупругого (S и AS) и Рэлеевского рассеяния света (а), и соответствующий спектр (b).

Discovered the inelastic scattering phenomenon in 1928

Was awarded the Nobel Prize for Physics in 1930

Новый тип вторичного излучения

observer

Диффузное излучение обычного типа, имеющее такую же длину волны, сопровождается **модифицированным рассеянным излучением** с меньшей частотой – **аналог** эффекта **Комптона**

Аналогия с комптоновским смещением (в красную сторону) бросается в глаза. Но механизм изменения длины волны должен быть, по всей вероятности, иной. При рассеянии света могут возбуждаться собственные инфракрасные колебания кварца за счет энергии рассеиваемого кванта ... и частота рассеиваемого кванта уменьшаться должна величину на инфракрасного кванта, соответствующего собственным колебаниям кристалла.

Комбинационное рассеяние света (КРС или RAMAN)

Рамановский спектр соединения L-Cystine

В Рамановском спектре за «ноль» принимают частоту Рэлеевского рассеяния (то есть частоту источника излучения – лазера *L*), а частоту линии (**Raman shift**) в спектре вычисляют вычитанием частоты Стоксовой (анти-Стоксовой) линии из частоты Рэлеевского излучения.

 $E = \hbar \omega = 2\pi \cdot \hbar c / \lambda$

$$E$$
 [эВ] = 1239.842/ λ [нм]
 λ [нм] = 1239.842/ E [эВ]

с = 2.997925•10¹⁰ см/сек ≈ 3•10⁸ м/сек ħ = 1.0545•10⁻²⁷ эрг•сек = 1.0545•10⁻³⁴ дж•сек 1 эВ = 1.6011•10⁻¹² эрг = 1.6011•10⁻¹⁹ дж 1 эВ = 8065.54 см⁻¹ = 11606 К

$$E[cM^{-1}] = \frac{1}{\lambda} = \frac{10^7}{\lambda} [HM] \Rightarrow$$

Raman shift $[cM^{-1}] = \frac{1}{\lambda_L} - \frac{1}{\lambda}$

 $1 \text{ M} \Rightarrow B = 8.066 \text{ cm}^{-1} = 11.606 \text{ K}$ $1 \text{ K} = 0.69497 \text{ cm}^{-1} = 0.0862 \text{ M} \Rightarrow B$

Normal modes of vibration in CO_2 (+ and — denote vibrations going upward and downward, respectively, in direction perpendicular to the paper plane).

Normal modes of vibrations in H_2O

Рамановский спектр полиэтилена с ультравысоким молекулярным весом.

На рисунке указаны различные колебательные моды

Спектры КРС очень чувствительны к природе химических связей – как в органических молекулах и полимерных материалах, так и в неорганических кристаллических решетках и кластерах. По этой причине каждое определенное вещество, каждый материал обладает своим собственным, индивидуальным КР спектром, который является для него аналогом

finger-print «<u>отпечатка пальцев</u>».

•Рамановская спектроскопия является одним из наиболее мощных аналитических методов, применяемых:

• при проведении анализа химического и фазового состояния различных объектов и их структуры;

• для неразрушающего (?!) контроля разнообразных процессов в режиме on-line;

• при исследовании и разработке новых полупроводниковых материалов, композитов, сверхпроводников;

• при характеризации и проведении исследований сложных систем с пониженной (OD, 1D, 2D) размерностью и различных нанообъектов.

Основные преимущества метода КР:

- неразрушающий (?!);
- бесконтактный;
- не требующий подготовки пробы;
- анализ твердых материалов и жидкостей, в определенных случаях
- также газов;
- возможность удаленного бесконтактного анализа (для систем с оптическим волокном; Лидары);
- возможность контроля температуры/давления/влажности в ячейках, криостатах;

• возможность картографирования образцов с высоким латеральным разрешением до 1 мкм (в Рамановких спектрометрах с конфокальным микроскопом);

• возможность сканирования по **глубине** образца, прозрачного в выбранном диапазоне, с проникновением вглубь **от 0.1 до 100 мкм** (в зависимости от частоты источника излучения).

В связи со слабым сигналом исследования КРС продолжительное время могли проводиться только в хорошо оснащенных спектральных лабораториях.

Для сравнения – сечение процесса флуоресценции $\approx 10^{-17} \text{ см}^2/\text{молек}$

К настоящему времени:

- 1. Созданы дешевые, миниатюрные и чувствительные ССД-детекторы (матрицы)
- 2. Созданы дешевые, миниатюрные твердотельные лазеры
- 3. Созданы интерференционные *рамановские* фильтры высокого качества

+

- голографические решетки, асферические линзы, смартфоны и планшеты;
- большая база спектров RS;
- световоды,

Продукты ИнСпектр

Судебная экспертиза

Идентификация неразрушающим методом

- волокон, тканей, пигментов;
- наркотиков;
- взрывчатых веществ

Искусство и археология

Анализ:

- органических и неорганических составляющих в старых картинах;
- внешних воздействий, таких как коррозия, окисление и старение картин;
- пигментов в археологических находках

Гемология

- •Идентификация и проверка драгоценных камней неразрушающим методом.
- •Анализ происхождения драгоценного камня
- •Контроль подделок, например, выявление «алмазов», выполненных из циркония.

Геология и минералогия

- Идентификация геологических материалов.
- Оценка включений в минералах.

Биологическая и медицинская диагностика

- Обнаружение скрытых изменений в молекулах, в том числе химическое взаимодействие препаратов, восстановление тканей
- Межклеточная SERS локализация и взаимодействие, анализ влияния препаратов на клетки, анализ взаимодействия клеток.
- Выявление раковых заболеваний на молекулярном уровне.

Фармацевтика

- Анализ таблеток, растворов и гелей.
- Контроль состояния лекарств: чистота и качество.
- Проверка сырья: 100% идентификация и проверка входных материалов.

Мониторинг окружающей среды

Полупроводниковая и энергетическая промышленность

•Характеристика кристаллизации кремния: контроль методом КРС изменений в кристаллах от аморфной до поликристаллической структуры.

- •Анализ микрочастиц для получения информации о потенциальном загрязнении.
- •Контроль механической нагрузки в полупроводниках.

Судебная экспертиза

Рамановская спектроскопия может применяться для идентификации:

- красок, чернил (авария автомобилей, идентификация рисунка)
- взрывчатых, наркотических, отравляющих веществ;
- состава взрывчатых смесей, порохов.
- полимерных пленок, различных волокон, твердых включений стекол

<u>идентификация различных типов черных красящих</u> <u>составов - фотокопира, струйного принтера</u>, <u>лазерного</u> <u>принтера</u>

<u>Анализ нейлонов различных марок - нейлон 6,</u> <u>нейлон 66, нейлон 610</u>

Судебная экспертиза

Идентификация состава взрывчатых смесей, порохов.

Гексоген взрывчатое вещество *ТЭН* (тетранитропентаэритрит), высокобризантное *взрывчатое* вещество,

Гемология

Идентификация и проверка драгоценных камней неразрушающим методом.

Синтетические алмазы

Исследования в области синтеза искусственных алмазов не могут обойтись без Рамановских исследований. Рамановское картографирование позволяет определить, насколько богатой алмазной крошкой получилась смесь мелкодисперсных углеродных образований (метод взрыва).

Raman spectrum of CCl₄

Определение температуры решетки Si при импульсном лазерном возбуждении (отжиге)

H.W. Lo et al. Phys. Rev. Lett. 44,1604 (1980)

Комбинационное рассеяние света (эффект Рамана)

Кинематика неупругого рассеяния света (стоксов процесс) в случае среды с трансляционной симметрией

 $\theta \approx 0^0$

 $\theta = 90^{\circ}$

 $\theta \approx 180^{\circ}$

$$\hbar\omega_{S} = \hbar\omega_{I} - \hbar\Omega_{0},$$
$$\boldsymbol{k}_{S} = \boldsymbol{k}_{I} - \boldsymbol{q}$$

Возбуждение в центре зоны Бриллюэна

 $\boldsymbol{q_B} \approx 10^8\,\mathrm{cm}^{-1}$

Определение величины **q** для рассеяния вперед, под углом 90⁰ и назад

 k_{S}

Закон сохранения волнового вектора

может не выполняться в следующих случаях:

Рассеивающая среда не обладает трансляционной симметрией.

Отсутствие трансляционной симметрии приводит к рассеянию колебаниями с *q_i≠q*. Это имеет место в кристаллах с дефектами, в твердых растворах и аморфных материалах.

Рассеивающий объем мал.

В этом случае рассеяние света обусловлено возбуждениями, волновые векторы которых находятся в диапазоне $\Delta q \sim 2\pi/d$ (где d — характеристическая длина рассеивающего объема).

Падающие и рассеянные волны затухают внутри рассеивающего объема.

При этих условиях, которые имеют место в металлах и полупроводниках с малой шириной запрещенной зоны, непрозрачных для света, k_I и k_S комплексные величины. Неупругое рассеяние света в данном случае обусловлено возбуждениями, волновые векторы которых находятся в диапазоне $\Delta q = \text{Im} \{ k_I \} + \text{Im} \{ k_S \}$ относительно $q = \text{Re} \{ k_I - k_S \}$.

Зависимость отношения интенсивностей запрещенной полосы КР с частотой 1360 см⁻¹ к разрешенной 1580 см⁻¹ от размеров кристаллитов *L_a*

Спектры КР углеродных волокон, полученных при различных температурах.

Спектры КР, полученные с различных участков при высоком пространственном разрешении < 1 *мкм*.

Определение размеров кристаллитов и оценка рабочих температур в образце после фрикционных испытаний

Сосуществование ВТСП и антиферромагнетизма

Неоднородность образцов с x = 0.1÷0.7 в разных областях

Схема, иллюстрирующая измерения толщины пленки с помощью методики микро-Раман. Лазерное излучение и Рамановское рассеяние экспоненциально ослабляются тонкой пленкой силицида никеля

Рамановский пик Si на частоте 520 см⁻¹, ослабленный при прохождении NiSi пленки. На вставке представлена вычисленная толщина пленки

Рамановские картинки, полученные в результате сканирования интерфейса NiSi / Si на частоте Рамановского пика Si 520 см⁻¹ (справа) и Рамановского пика NiSi 214 см⁻¹ (слева)

Как следует из рисунка, вследствие экспоненциального ослабления Рамановского пика Si на частоте 520 см⁻¹, небольшие изменения в толщине NiSi пленки приводят к существенным изменениям в интенсивности Рамановского пика Si. Как видно, наблюдается хорошая корреляция обеих картинок

Рамановский пик с частотой ω_0 в совершенном кристалле Si сдвигается по частоте и ассиметрично уширяется под воздействием различных факторов.

микро – Раман

 $\Delta \omega = 0.2 \ cm^{-1} \Rightarrow -90 \ MPa$

Изменение сдвига ∆∞ полосы КР Si **521 см**⁻¹ из-за напряжений под нитридными полосками при различной ширине кремниевой подложки.

Stress in a Si chip bonded to a Cu substrate.

а) возбуждение КР света –
 лазерные источники
 лазеры с перестраиваемой частотой излучения

ЛАЗЕРНЫЕ ИСТОЧНИКИ ВОЗБУЖДЕНИЯ КР СВЕТА

 CW – лазеры. P = 1 mW ÷ 20 W.
 Газовые лазеры: Ar⁺, Kr⁺, He-Ne, He-Cd.
 Твердотельные лазеры: Nd:YAG – лазеры с диодной накачкой λ = 1064, 532 (355, 266, 213) нм

Лазеры с <u>перестраиваемой</u> длиной волны излучения позволяют получать резонансное КР света. В условиях резонансного возбужения:

(*i*) возрастает сечение неупругого рассеяния света до 10³ ÷ 10⁵ раз, что необходимо для увеличения сигнала КР света при характеризации и проведении исследований низкоразмерных систем с малыми размерами рассеивающих областей;

(*ii*) возможно селективное возбуждение конкретных компонент (соединений) в сложных системах

Конструктивно такие лазеры делятся на несколько типов:

твердотельные – лазеры с перестраиваемой частотой на Ti-Sp

 $(\lambda = 780 \div 1100 \text{ нм}) +$ удвоение частоты генерации;

лазеры на красителях – перестройка осуществляется с помощью призмы или диффракционной решетки (λ = 350 ÷ 1000 нм); диодные лазеры – перестройка осуществляется в пределах полосы излучения лазерного диода.

Spectral Coverage of Scientific Diode Lasers

Сравнение рамановского спектра при разных длинах волн источника возбуждения для демонстрации влияния флуоресценции

b) оптическая *многоканальная* регистрация;
 Рамановские спектрометры;

Многоканальная ССD-детекторы \implies регистрация спектров КР света

Число МДП-элементов ~10⁶

Сравнение качества спектров КР при многоканальной регистрации с помощью CCD (a), и одноканальной – с помощью фотоумножителя (b).

Фильтры для РС

Raman notch filter

www.lasercomponents.com

Фильтры для PC VOLUME BRAGG GRATINGS

b) Рамановские спектрометры

1 – исследуемый образец;
2 – оптоволоконный кабель к спектрометру;
3 – лазерный источник оптического возбуждения;
4 – рамановский пробник, содержащий широкополосный фильтр (5), дихроичное зеркало (6), узкополосный ночь-фильтр (7) и систему согласующих коллимационных линз (8)

оптоволоконный спектрометр AvaSpec-2048FT-2-TEC

AVANTES BV (NETHERLANDS)

DIFFERENT TYPES OF GRATING SPECTROMETERS

More examples and applications can be found at http://www.oceanoptics.com/ http://www.jobinyvon.com/

Тройной RAMAN – спектрометр

Princeton Instruments

a division of Roper Scientific, Inc.

TriVista™ Triple Spectrometer

Raman spectrum of L-Cystine

с) микро - Раман

Оценка плотности оптической накачки в методике *микро* – *Раман*

 $P = 1 \ mW / 1 \ \mu m^2 = 10^{-3}W / 10^{-8} cm^{-2} = 100 \ kW / cm^{-2}$

c) Surface enhanced Raman scattering (SERS)

Феноменология эффекта SERS

Типы SERS-подложек:

- -- Электрохимически загрубленные поверхности металлич. электродов (многократные последовательные окислительно-восстановительные циклы) К~10⁶
- --Островковые пленки, получаемые вакуумным напылением металла на диэлектрическую подложку К~10⁶ (размер островков 10-100нм)
- -- нанолитографически полученные массивы частиц K~10⁸
- -- коллоидные металлические частицы и кластеры K~1012

1500 2000 Δ√ (cm⁻¹)

000

Задача: идентификация веществ в ультра-малых концентрациях Решение: наноструктурированные SERS подложки

Медицинская диагностика / Биотехнологии

Продукты ИнСпектр

Для применений в криминалистике и научных исследованиях.

- Автоматизированная ХҮ-подвижка
- Создание топографии поверхности образца
- Выявление примесей в порошковом материале на уровне 0,1%
- Компактный и быстродействующий аналог хроматографа

2D Сканирующая Моторизованная Подвижка

🖵 Шаг от 0,36 µм

Автоматическое построение 2D карты поверхности образца

ПО для автоматического распознавания веществ

Моторизованная двухкоординатная подвижка с шагом 0,36 µм позволяет проводить индивидуальный анализ частиц размером в 2-3 микрона среди тысяч схожих по физическим и химическим свойствам

Заключение

Рамановская спектроскопия в настоящее время является мощным инструментом

- при проведении анализа химического и фазового состояния различных объектов и их структуры;
- для неразрушающего контроля разнообразных процессов в режиме real time;

при характеризации и проведении исследований сложных систем с пониженной (0D, 1D, 2D) размерностью и различных нанообъектов.